
Global and Thread-Local Activation

of Contextual Program Execution Environments

Markus Raab

Vienna University of Technology

Institute of Computer Languages, Austria

Email: markus.raab@complang.tuwien.ac.at

Abstract—Ubiquitous computing often demands applications
to be both customizable and context-aware: Users expect smart
devices to adapt to the context and respect their preferences.
Currently, these features are not well-supported in a multi-core
embedded setup. The aim of this paper is to describe a tool
that supports both thread-local and global context-awareness.
The tool is based on code generation using a simple specification
language and a library that persists the customizations. In a case
study and benchmark we evaluate a web server application on
embedded hardware. Our web server application uses contexts to
represent user sessions, language settings, and sensor states. The
results show that the tool has minimal overhead, is well-suited
for ubiquitous computing, and takes full advantage of multi-core
processors.

I. INTRODUCTION

Context-awareness aims to give users the impression of de-
vices to be smart. We want devices to react according to
properties of their physical environments. E.g., when a
mobile phone does not feel body temperature anymore, it
can deactivate vibration because the user would not sense
the vibration.

Customizability intends to give users the opportunity to change
unwanted defaults, hence bringing the behavior of the
device in line with their needs. For example, if users
are deaf or blind, the deactivation of vibration might not
be appropriate, because they may rely on sensing the
vibration.

Multi-Core Processors pose new challenges and are undoubt-
edly an upcoming trend for embedded computing. Multi-
threading is a popular technique to better facilitate multi-
core processor resources.

These three issues seem unrelated, but are often found
together in ubiquitous computing. Previous work on context-
changes did either lack good support for customizability or
multi-threading. Changes to context either:

influenced all threads which has severe performance draw-
backs because of the needed thread synchronization or

influenced only a single thread which is not expressive
enough because the context can affect the whole device.

In this paper, we describe a tool that empowers developers
to effortlessly provide different customizations in different
contexts for multi-threaded applications. Program execution
environments, in a broad sense, are the influence of systems
on programs, including command-line arguments and configu-
ration files. Our idea is to support activation of such contextual
program execution environments selectively in threads.

On the one hand, our tool enables threads to globally
change the context when sensors detect an event with con-
sequences for the whole device, e.g., when the battery is low.
On the other hand, our tool allows us to have local context
changes that deal with local issues, e.g., language settings for
a specific Hypertext Transfer Protocol (HTTP) server request.

Our tool provides flexibility for the programmer. Neverthe-
less, it is safe to use: It takes care of necessary synchronization.
It has a build-in way to serialize all variables, which is needed
for persistency of, e.g., customization.

Our tool has the potential of increasing efficiency: It
decreases development effort because of code generation and
it increases performance by caching. Finally, the tool is exten-
sible because the code generator is adaptable.

The paper tackles the following questions:

1) How can context-awareness be semantically more
powerful for ubiquitous computing?

2) Is the overhead of our tool, especially in embedded
and multi-threaded scenarios, acceptable?

These questions are significant, because embedded computing
tends to have multi-core processors more often, while many
other resources are still very limited.

The structure of the paper is as follows: In Section II we
take a look at the state of the art and our previous contributions
regarding context-awareness. In Section III we present our tool.
In Section IV we report on a case-study with a web server on
embedded hardware. After comparing with related works in
Section V, we finally conclude the paper in Section VI.

II. BACKGROUND

Context-oriented programming (COP) allows us to natu-
rally separate multi-dimensional concerns [1], [2]. It is an
extension of object-oriented programming. Its main concept is
the activation and deactivation of so called layers. Every layer
adds an additional dimension that cuts across the context-aware
system. Layers can be seen as a modularization concept [3].

The activation and deactivation of layers can happen at
any time during program execution. A currently active stack
of layers defines the context the program or thread is in. COP
permits us to specify programs with very dynamic behavior.
In terms of efficiency two main issues exist:

1) The activation and deactivation of layers is expensive.
2) The use of context-aware objects is expensive.

For both issues improved solutions were proposed:
Costanza et al. [4] used already optimized language-features
for layer activation and Bockisch et al. [5] introduced control
flow guards. A comparison [3] revealed that the implementa-
tions, relative to host language implementations, are still very
inefficient despite these optimizations. Performance penalties
of 75% to 99% [3] made COP unattractive for embedded or
ubiquitous computing. The improved solutions performed only
better in specific cases, e.g., without active layers.

The main reason for the modest performance is that these
approaches dynamically adapt application code. Tanter [6]
proposed a lightweight alternative: Contextual values. They
seem to be easier to learn because they “boil down to a trivial
generalization of the idea of thread-local values” [6].

Contextual values stem from COP and naturally work along
with the concepts of dynamic scoping and layers. They allow
us to limit side-effects to an enclosing context. Different from
previous approaches, no application code is adapted. Because
of that property, we were able to demonstrate [7] that an
implementation of contextual values can have zero overhead on
access, relative to the host language, despite of active layers.

In the remainder of this section we will give a brief
introduction to our previous work [7]. Contextual values are
specified in configuration file syntax, e.g., INI:

[/watchdog/%security%/enable]

type=boolean

Here we specify enable as a contextual value of type
boolean below another contextual value watchdog. A tool
generates the code for the underlying classes Enable and
Watchdog from the specification. All classes are nested in
one large hierarchy, with Environment as their root element.

Parts of the specification enclosed in %, e.g. %security%,
are placeholders. A single contextual value can have many
values: one value for every context. These values are stored
in a key set data structure. The unique keys needed to lookup
individual values is determined by substitution of the place-
holders.

generate

execution

environm.

depends on

load
and

store

key set

access

contextual
value spec.

context-aware
class

code generator Elektra library

context-aware

access

layers and
program code

access

Fig. 1. Overview of Elektra [7], the implementation of our tool. The bold
(blue) boxes need to be implemented by the user of the tool.

In Figure 1 we see that the context-aware classes are
generated using the contextual value specification. The library
part of Elektra (i.e. an implementation of our approach [7]
written in C), maps the program execution environments (i.e.,
command-line arguments and configuration files) to the in-
memory data structure key set. Contextual values are initialized

using the key set. Additionally, the context-aware classes use
the key set to store the concrete values for every context. They
respect the context by using a key with all placeholders of
the specification substituted. Furthermore, Elektra allows us to
remember customizations by serialization of contextual values
back to the program execution environments.

To work with Elektra, developers only have to specify the
contextual values and layers as shown by the bold (blue) boxes
in Figure 1. Then, developers can directly use the contextual
values in the own code in the same way as variables are used:

void printWatchdogStatus(Watchdog::Enable const & e)

{

if (e) { cout << "Watchdog is enabled"; }

}

Using the methods with and without the user changes the
context, potentially influencing contextual values. In Elektra
values are only affected iff one of the placeholders in the
specification matches the identification of the layer:

void enableWatchdogInSecurityContext(Watchdog::Enable & e)

{

bool originallyEnabled = e;

assert(e.getName() == "/watchdog/%/enable");

e.context().with<Security>("A")([&]{

e = true; // security context "A" active here

assert(e.getName() == "/watchdog/A/enable");

}); // end of security context "A"

assert(e == originallyEnabled);

assert(e.getName() == "/watchdog/%/enable");

}

For the understanding of this paper the syntactic details of
C++11 lambdas are irrelevant. All we have to know is that
the first parentheses after with contain arguments for layer
construction. The block after the capture list [] is the lambda
function. It will be executed in the same thread, but in another
context.

The first assert in the function enableWatchdog

InSecurityContext states that the layer Security is inac-
tive, indicated by the % as empty layer name. In the next line we
activate the layer Security using the with statement. Within
the block, the placeholder %security% is replaced with the
security level A.

From the assert at the end we still get the original value,
because the layer Security is inactive. Nevertheless, the
function has a side-effect: e is changed in Security-context
A. The resulting configuration in the key set is, e.g.:

/watchdog/%/enable=false

/watchdog/A/enable=true

Layers are specified in the host language and need to
provide a method id() that refers to the placeholder. The
method operator() allows us in C++ to mimic function
invocation on objects. The returned string of the function
invocation is used to substitute the placeholder. By returning
an empty string, layers can pretend that they are inactive. The
layer must be implemented by the developer, e.g.:

class Security : public kdb::Layer

{

public:

Security(std::string level) : level(level) {}

std::string id() const { return "security"; }

std::string operator()() const { return level; }

private:

std::string level;

};

According to our previous work [7], Elektra has following
properties:

1) Zero overhead when reading contextual values.
2) Classes for contextual values are synthesized using

code generation from the specification.
3) A unique name for every contextual interpretation

eases debugging and enables persistency.
4) Automatic initialization of values from contextual

program execution environments is integrated.

III. COELEKTRA

In this section we will explain an extension of Elektra,
called CoElektra, using examples we faced in the development
of embedded systems. These include, but are not limited
to, power saving, tampering, and different hardware setups.
Additionally, we refer to issues of web servers running on
such hardware.

A. Activation

Using the methods activate() and deactivate() we
are not limited to a single block but switch the context globally:

void enableWatchdog(Watchdog::Enable const & e)

{

assert(e.getName() == "/watchdog/%/enable");

e.context().activate<Security>("A");

assert(e.getName() == "/watchdog/A/enable");

assert(e == true);

} // Security Layer A stays active

While effects of the with-statements are bound to a
single thread of execution, in CoElektra, activate() and
deactivate() potentially influence every thread of execu-
tion:

c1.deactivate<BatteryLow>();

// Security unchanged

c2.activate<Security>(cv);

// BatteryLow inactive

The listing shows the parallel execution of two threads.
The local variables c1 and c2 represent the context and
hold the currently active layers per thread. The semantics
of (de)activate() are as follows: At the end of the left
side, the layer BatteryLow is inactive and Security is
unchanged, while on the right side, BatteryLow is inactive
and Security is active. We see that (de)activate() respect
previous invocations, even if they happened in another thread.
The context c2 updates the layers deactivated by c1 before it
will activate Security. This synchronization of layers before
(de)activation is an important property: Layers can depend
on each other and only this way we can guarantee that the
context consists of the same layers with the same state for all
threads. In the example above, the contextual value cv already
considers the inactive layer BatteryLow at activation time.

Sometimes we want to update a context, i.e., update the
layers changed by other threads, without introducing changes
to the global active and inactive layers:

c1.activate<BatteryLow>();

c2.syncLayers();

// BatteryLow active

The method syncLayers() updates the layers of the
context c2 considering every activate() or deactivate()
of any thread that happened up to that moment. After it is
executed, the layers in c2 will be the same as in the context that
caused the last layer activation, i.e. c1 in the example. In other
words: The thread of execution using syncLayers() has the
same active and inactive layers that it would have had, if it
had executed every activate() and deactivate() of the
program itself. Every thread that recently used syncLayers()

will have the same active layers. Yet, during the execution of a
with- and without-block, individual layers can temporarily
differ.

B. Coordination

ThreadContext Coordinator

Environment key set

Fig. 2. Coordination between major parts involved. The dotted boxes can be
shared between threads. Arrows indicate a composition.

Some coordination between the local variables is necessary
to make global layer activation work. In Figure 2 we see the
major parts involved. Key set is the set of all values in a form
suitable for serialization. Environment is the root of the gen-
erated class hierarchy. Objects of ThreadContext encapsulate
all layers of one thread. As the name suggests, every thread
has its own ThreadContext. Finally, the Coordinator takes
care of coordination between ThreadContext. The boxes
with the dotted pen width are typically only instantiated once
per process.

Neither in KeySet, ThreadContext nor in the con-
textual values (=Environment) any locks or atomic values
are needed. All coordination work is delegated to objects
of the class Coordinator. Internally, both ThreadContext

and Coordinator use the observer pattern. To completely
decouple the coordination and the key set, callbacks are used.

Applications are not limited to a single object of the class
Coordinator nor key set. CoElektra can be used within
plugins or otherwise nested applications. Nevertheless, the fol-
lowing constraints apply: Every Coordinator is responsible
for exactly one KeySet, every ThreadContext is bound to
exactly one Coordinator, and again every contextual value
is bound to exactly one ThreadContext.

C. Assignment

The assignment of contextual values adheres the expected
semantics. Suppose value is specified to be an integer:

[/value]

type=long

Then, we can assign and use the contextual value as integer:

value = 8;

assert(value == 8);

value -= 2;

assert(value == 6);

The assignment has, however, additional overhead. For ev-
ery change of the value, an underlying key set data structure is
updated, too. This design decision is based on the assumption
that customization happens rather seldom. This behavior has
two desired properties. First, newly created contextual values
always have an up-to-date value:

value = 5;

ThreadContext tc(c);

Value value(ks, tc);

assert(value == 5);

Second, the data structure key set is always up to date and
its serialization leads to desired results.

D. Synchronization Points

Read-only use of contextual values is unsynchronized. To
see layer (de)activations and assignments of other threads,
the programmer has to define checkpoints. In the checkpoints
global locks ensure sequential execution. Priority concerns are
left to threading facilities of the operating system.

The explicit definition of checkpoints has an important
advantage if an algorithm cannot deal with variables changed at
any time: The programmer defines where updates can be done
safely. For example, let us consider an algorithm that should
terminate faster when the battery is low and thus enables the
device to consume less power. First, we introduce a contextual
value that defines the needed accuracy for the algorithm:

[/algorithm/%battery_low%/accuracy]

type=long

Some algorithms would allow us to change the accuracy
at any time. Then we would not save power anymore, because
of added synchronization overhead. Instead, we synchronize
once and then calculate the task without any overhead:

void calculateTask(Algorithm::Accuracy const & accuracy)

{

accuracy.context().syncLayers(); // sync accuracy

for (long i=0; i<accuracy; ++i)

{

// calculate Task with given accuracy

// values will not change within loop

}

}

Note that context() returns the ThreadContext con-
nected to accuracy. Using the methods (de)activate and
syncLayers we define checkpoints. Every time they are
passed, all contextual values changed in other threads are taken
into account.

E. Thread-Based Layers

Layers that internally compare the current thread identifi-
cation (ID) with selected thread IDs are a powerful tool. Even
when such layers are activated globally, they influence only
selected threads. For example, we can activate a layer only in
a thread specified with the thread ID selected:

Implementing such layers is straight-forward: We have to
check if the current thread ID equals the thread ID of a selected
thread. The method pthread_self() returns the thread ID
of the calling thread. If the current thread is the selected
thread, we return an identification string. Otherwise we return
an empty string to indicate that the layer is inactive.

class Thread : public kdb::Layer

{

public:

string id() const { return "thread"; }

string operator()() const {

if (pthread_self() == selected) return "active";

return "";

};

private:

pthread_t selected;

};

Such layers are also useful for changing the context for
a pool of threads. We simply expand our idea from a single
selected thread to a set of relevant threads. For example, if
a pool of background threads all do the same calculations,
we can influence all of them, but no other, with a single
activate().

F. Immediate Actions on Layer Activation

Sometimes we desire an immediate action when a layer
is switched. For example, if we detected a tampering attempt
of our hardware, we immediately want to remove all crypto-
graphic private keys of the device:

void startupcode()

{

Coordinator c;

c.onLayerActivation<Tamper>([]()

{removePrivateKeys();});

Then, the given function will immediately be executed
once the layer Tamper is activated globally. It does not affect
local with statements. Because the functionality is only for
global activations, the method is part of the Coordinator

interface. Such callback hooks are not only useful when we
need to execute code as fast as possible on layer activation.
They are helpful when activation/deactivation provides cleanup
functionality.

For example, the shutdown of a web server can involve
the joining of several threads. If a thread is blocked because
of a system call, e.g., read() or select(), we have to
send a signal in order to terminate the thread. Such special-
ties cannot be dealt with OOP-techniques (e.g. destructors)
nor with exceptions-mechanisms (e.g. finally). They are,
however, trivially solved using layer actions, e.g., a thread
with a blocking read() or select() initializes itself in the
following way:

pthread_t tid = pthread_self();

c.onLayerActivation<Shutdown>([tid]{

pthread_kill(tid, SIGHUP);

});

// use of e.g. read() or select()

In the first line we get our own thread ID and store it in the
variable tid. That is necessary, because we do not know which
thread will activate the layer Shutdown. Then, we install an
action on the layer activation of Shutdown. In it we kill our
own thread to interrupt the blocking system call, e.g., read or
select. Once the layer Shutdown is activated by any thread:

tc.activate<Shutdown>();

Not only contextual values, e.g. timeouts, are influenced,
but also hooks are executed that are needed for the shutdown
procedure. We can make sure that every thread reaches the exit

point. The other available function onLayerDeactivation()
can be used similar to atexit, but for layers, e.g., for cleaning
up resources allocated on layer activation.

G. Implementation and Use

Finally, we want to describe the key aspects of our imple-
mentation design and how to take advantage of it. Our imple-
mentation is heavily based on C++ policy-based class design.
Some behavioral aspects can be changed by policies. Because
of the way we used policies in template arguments, they do not
cause overhead compared to separately implemented classes.

For example, Elektra, which did not support multi-
threading [7], is still available by using another policy class.
Yet another policy class completely disables the context ori-
ented features. CoElektra differs in using the new policy class
ThreadContext. As a matter of fact, the contextual value
classes are a C++11 using with correct policy classes applied:

template<typename T,

typename PolicySetter1 = DefaultPolicyArgs

/* + N more PolicySetters */ >

using ContextualValue = Value <T,

ContextPolicyIs<ThreadContext>,

PolicySetter1

/* + N-1 more PolicySetters */ >;

Let us look at a different specification:

[/version]

type=boolean

readonly

opt=V

In this case, the class Version is specified as type
boolean. Because of the property readonly, write attempts
to the contextual value lead to a compilation error. The
property opt specifies that the value is connected with a
command-line parameter -V. For example, a main function
that uses CoElektra:

int main(int argc, char**argv)

{

KeySet ks;

ksGetOpt(argc, argv, ks);

KDB kdb;

kdb.get(ks, "/");

Coordinator c;

ThreadContext tc(c);

Environment<WritePolicyIs<ReadOnlyPolicy>>env(ks,tc);

}

The implementation of the method ksGetOpt() and the
class hierarchy Environment are synthesized from the code
generator. ksGetOpt() parses all arguments as specified with
opt. The key database KDB reads the other parts from the
program execution environment using kdb.get(). These parts
are typically configuration files.

The WritePolicyIs of the example above changes the
policy class for all contextual values for this instantiation of
the Environment. Values in this hierarchy cannot be changed
anymore. Instead, every attempt will lead to a compilation er-
ror. The class Environment forwards all policies, introduced
in a using or as shown in main, to all generated contextual
classes in the nested class hierarchy. When the developer wants
to influence individual contextual values in every instantiation,
the specification must be used instead.

IV. EVALUATION

We benchmarked an application that uses CoElektra on
a Raspberry Pi R© Model B and on a hp R© EliteBook 8570w

using the central processor unit Intel R© Core
TM

i7-3740QM
@ 2.70GHz. The operating system was Debian GNU/Linux
Wheezy 7.8 with the respective architecture armhf (Raspbian)
and amd64. We used the compiler gcc 4.7.2-5 (+rpi1 on
Raspbian). The systems were not altered for performance
improvements, e.g. maximal number of file descriptors were
left unchanged to their default 1024.

A. Case Study: HTTP Server

We developed an HTTP Server using the high-performance
C++ web development framework CppCMS [8]. The target
platform was a Raspberry Pi R© Model B because of its low
prize and power consumption. In this case study, we will
show some functionality that is directly and elegantly ex-
pressible with CoElektra. Additionally, we will show that the
performance (expressed as page replies per second) are hardly
influenced when applications use CoElektra. From only 83
lines of specification 3500 lines of policy-based nested C++
classes and command-line option parsing code were generated
with some affect on the size of the binary. The used caching
technique, however, leads to much better execution times [7].

CoElektra is well suited to represent an HTTP session as
contextual information. As first step, we need a specification:

[/sw/pi/%session%/language]

type=string

[/sw/pi/%language%/hello]

type=string

After we defined the layers that represents the language
and a session, we are ready to open a session within the HTTP
request handler (out is a stream to write the HTTP response):

tc.with<Session>(sessionid)([this](){

out << "<html>\n"

"<body>\n";

out << "<p>Language: " << language << "</p>";

tc.with<Language>(language)([this](){

out << "<p>" << hello << "</p>";

});

out << "</body>\n"

"</html>\n";

});

We create a thread-local context using with<Session>.
Then, all contextual values are changed according the session,
e.g. the contextual value language. Then, we can activate
other layers, e.g. Language. When we output the contextual
variable hello, the output depends on the user’s language
configuration.

Obviously, we do not want to lose session information of a
user, e.g. the selected language. CoElektra easily fulfills such
persistency requirements with the following code:

std::unique_lock<std::mutex> l = c.requireLock();

kdb.set(ks, "/");

In the code, we require a lock from the Coordinator

and use Elektra’s functionality to serialize all parts of the data
structure ks using kdb.set(). The key set ks contains all
contextual values, but the second argument allows us to restrict
which parts are serialized.

Additionally, we were able to represent global changes
of contexts. We used this feature for tamper detection. In
our case study we used a passive infrared sensor HC-SR501
connected to a general-purpose input/output (GPIO). On tam-
pering events, the information is displayed on the delivered
web pages. To implement it we first specify a contextual value:

/sw/pi/tamper/%tamper%

One thread uses the system call select to wait for
tampering events. Once a tampering event occurs, the next
statement activates the layer Tamper. We already know that
this action eventually changes all contextual variables in all
threads. In our case study we used the contextual value tamper
to inform users (Note that tamper is abbreviated to t and
context to c):

select(fd+1, 0, 0, &fds, 0);

t.c().activate<Tamper>();

t.c().syncLayers();

if (t) out<< "tamper!!!";

Finally, we were able to arbitrarily multiplex GPIO using
layer activations. Such requirements can be elegantly fulfilled
using hardware profiles. A profile is a layer that does not
distinguish between states, but between different setups. In
our case study we had a configuration file with the following
content:

/hw/pi/pi/gpio/folder = /sys/class/gpio/

/hw/pi/pi/gpio/tamper = gpio7

/hw/pi/elitebook/gpio/folder = ˜/context/pi

/hw/pi/elitebook/gpio/tamper = tamper.txt

Given a hardware profile identification, e.g., read from an
ordinary file or EEPROM, we can activate the correct hardware
profile. On the laptop EliteBook, where no GPIO is available,
we wrote test values into ordinary files that behave in the same
way as the kernel interface. Apart from easier development,
these hardware profiles allowed us to have different hardware
setups with the same application running on it.

Additionally, for testing purposes, we took advantage of our
approach and activated layers within unit tests, which works
without target hardware: We get hardware abstraction for free.

B. HTTP Replies

First, we did benchmarks on the EliteBook. To measure
the replies per seconds we used httperf with the arguments:

--hog --num-conn=600000 --rate=6000 --server localhost

We determined the rate by searching for the highest
throughput without errors. Instead of the tampering by physical
movement, we used a loop that tampers every N time units:

while (!shutdown)

{

tc.activate<Tamper>();

std::this_thread::sleep_for(N);

tc.deactivate<Tamper>();

std::this_thread::sleep_for(N);

}

We simulated a very high number of layer activation/de-
activations. Even with only a nanosecond delay (N), no decay
of replies per seconds was measurable. Only when the delay
was completely removed, a considerable slowdown was expe-
rienced. We expect that this effect is the result of the nearly-
always hold locks that cause starvation.

To explore the effect of long hold locks more closely, we
tried to use the serialization of the key set. The serialization
involves file access and naturally takes much longer. When
accessing the key set, a lock causes all requests to wait.
Even though expected otherwise, this way we got no decay of
performance. Out of options for a realistic setup, we require a
lock from Coordinator for a fixed time of ten milliseconds.
Then, we vary the time L (during which no lock is held):

while (!shutdown)

{

std::this_thread::sleep_for(milliseconds(L));

t.syncLayers();

std::unique_lock<std::mutex> l = c.requireLock();

std::this_thread::sleep_for(milliseconds(10));

}

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ●

0

2000

4000

6000

0 10 20 30 40 50

lock−free time [ms]

n
u

m
b

e
r

p
e

r
s
e

c
o

n
d

 [
1

/s
]

●● reply

request

Fig. 3. HTTP requests and replies per second with increasing lock-free time
(L) in ms. The time of 10 milliseconds corresponds to 50% lock-free time.

As we see in Figure 3 both the requests and replies rise with
longer lock-free periods. With 14 milliseconds, i.e. 58.3%,
unlocked time, we already get the full throughput time of 6000
replies per second. We conclude that CoElektra is sensitive to
locks that are not released quickly. We expect this behavior to
be a non-issue, because it is easy to avoid holding the lock of
the Coordinator for such a long time.

On a single-threaded system, however, the picture looks
entirely different: In the second benchmark the web server
was running on the Raspberry Pi and httperf was running on
the EliteBook with following arguments:

--hog --num-conn=15000 --rate=150 --server pi

The two computers were connected using a 100MB/s
switch. The maximum throughput rate on this hardware is only
about 150 replies per second, because of threefold reasons:
The processor is much slower, the processor has only a single
core, and the network stack adds additional overhead. Running
httperf on the same hardware is not an option, because then
the low resources would be reduced again.

As shown in Figure 4, in this setup a decay of perfor-
mance is minimal, but clearly visible, when activate() and

●
●

●

●
●

● ●

●

● ● ● ●
●

● ●
● ●

● ●
●

● ●
● ●

● ●
●

● ●
● ●

● ●
●

● ●
● ●

● ●
●

● ●
● ●

● ●
●

● ●

0

50

100

150

0 10 20 30 40 50

layer activations per millisecond [1/ms]

n
u

m
b

e
r

p
e

r
s
e

c
o

n
d

 [
1

/s
]

●● reply

request

Fig. 4. HTTP requests and replies per seconds on Raspberry Pi with
decreasing layer activations per milliseconds (N).

deactivate() is executed in a loop with a sleep time (N) of
13 milliseconds1. Such an effect is not surprising. The reason
is that on the single-core processor, the background activity
(layer switching) influences the main activity, because of the
HTTP request handlers have to share the same core.

C. Performance Comparison

For the next benchmarks we used time-measurement with
gettimeofday. We executed each benchmark eleven times
for the box-plot. We used 100,000 invocations of different
methods in CoElektra. Because the results on the Raspberry
Pi are nearly identical, except of a large constant factor, the
results are not shown here.

●

●●●

●

●
●

0.0

0.1

0.2

0.3

h
a

s
h

m
a

p

k
s
L

o
o

k
u

p

s
y
n

c
L

a
y
e

rs

w
it
h

0

e
v
a

lu
a

te

s
w

it
c
h

0

e
xe

c
u

ti
o

n
 t

im
e

 [
s
]

Fig. 5. Comparison of the most important operations on the EliteBook with
linear scale in a box plot. Black dots are outside 1.5∗interquartile range.

As we see in in Figure 5 the C++11 hash map lookup
(0.016 seconds) is twice as fast as Elektra’s method ksLookup

(0.03 seconds), which used to lookup values in the key set. This
is not surprising as ksLookup has additional features such as
cascading lookups and namespaces [9]. Very welcome is the
property that syncLayer is fast (0.08 seconds).

In CoElektra the developer specifies which layers influence
which contextual value. As we see in Figure 6 the number of
influenced values play a crucial role: A with block (with0:
0.09 seconds), and the methods activate and deactivate

1It is pure coincidence that this number is similar to the one of the previous
experiment.

(switch0: 0.28 seconds), that do not influence a single
variable, execute in a short time (also shown in Figure 5).
Note that for withN and switchN benchmarks only 50,000
loop iterations are necessary to perform 100,000 invocations.
With a higher number of connected contextual vales, the costs
increase linearly.

The method evaluate needs some explanation: It is used
to replace all placeholders with the correct values of the layers.
This method is a very common operation. In the benchmark
the specification is 43 characters long and contains three place-
holders. We see that this part central to CoElektra does not
contribute significantly to the with and activate overhead
if values are connected to it. Surprisingly, the propagation of all
events to other ThreadContext is not expensive: activate
and deactivate (=switch) perform nearly as good as with.

●

●

●

●

●

●

●

●

●

●

0

3

6

9

12

0 1 2 3 4 5 6 7 8 9

number of connected contextual values

e
xe

c
u

ti
o

n
 t

im
e

 [
s
]

●● switch

with

Fig. 6. Comparison of layer switches using the methods activate, deactivate
and with. The number of connected contextual values is varied.

D. Resource Utilization

The stripped library libelektra.so.0.8.10 only has a
size of 109,912 bytes on amd64 and 98,456 bytes on armhf.
The plugin for parsing INI files, needs another 22,760 bytes
extra (libelektra-ini). In order to have a multi-process and
thread-safe storage another 47,560 bytes are needed (libelektra-
resolver). The library libxml2.so.2.8.0 that is often used for
similar purposes (i.e., configuration file parsing and validation)
has a size of 1,436,984 on amd64 and 1,196,108 bytes on
armhf.

Elektra needs to allocate memory on the heap. To measure
the amount we used the maximum resident set size. First, we
started a program creating an empty key set on the EliteBook
which needed 6660 kilobytes. For the other numbers given
here, we removed that offset. With only two keys in a set, 84
kilobytes were needed. For ten thousand keys 1900 kilobytes
were required, which should be sufficient for most use cases.
For forty thousand keys 7612 kilobytes were needed.

On Raspberry Pi we get similar, but smaller, numbers. The
program creating an empty key set needs 1568 kilobytes. With
only two keys in a set, 60 kilobytes extra are needed. For ten
thousand keys 1248 kilobytes were required and, finally, for
forty thousand keys 4864 kilobytes were needed. We think that
the smaller additional memory is due to the 32bit architecture:
The data structure uses pointers extensively.

V. RELATED WORK

Jung et al. [10] applied code generation for embedded
systems. Different from CoElektra they used partial evaluation.
They assumed that the configuration is static, i.e. neither
customizable nor context dependent. Additionally, they used
libxml2 which needed to be removed by the partial evaluation,
because of the much larger size as discussed in Section IV.

Watanabe and Takeno [11] describe an actor-based model
for cross-context messages. Their approach enables them to
asynchronously change the context with all messages received
in the correct context. This work is of interest, when CoElektra
is applied to actors instead of threads.

Costanza et al. [4] briefly mention ensure-active-

layer that allows them to globally activate layers. Unfortu-
nately, no explanation of the semantics is given. Their approach
dynamically creates classes and inherits from layers, while in
CoElektra layers are ordinary hand-written classes.

Riva et al. [12] unearthed that a hybrid mediator-observer is
used in almost all of their surveyed COP systems. CoElektra is
no exception and uses this pattern for thread synchronization.

In our previous work Elektra [7] we demonstrated that
contextual values can have zero overhead on access compared
to native C++ variables. CoElektra still has this property.

Löwis et al. [13] also claim that most context-dependency
is contextual state. They introduce dynamic variables that are
similar to our contextual values without serialization. Their
proposal for implicit layer activations is comparable to our
approach, but very costly: They add checks on every use.

VI. CONCLUSION

In this paper, we introduced semantics to efficiently and
elegantly support context that is inherently global, e.g., changes
of the physical environment. They fulfill a whole range of
use cases in embedded and ubiquitous computing. So called
thread-based layers retain previous semantics by limiting
global activation to selected thread(s) in an efficient way.

We saw that our approach introduces a better multi-core
processor support for context-aware ubiquitous computing.
Our approach enables algorithms to concurrently read con-
textual values without any performance decay. Only actually
switching context and synchronization points cause some over-
head, but is efficient if the developer specified that only a
reasonable number of contextual values are influenced.

In benchmarks we showed that continuous context switches
do not have significant impact on a web server application.
On a single-core processor with a high number of context
switches the decay was noticeable. On a multi-core processor
only an unrealistic long global lock, with its lock less than
58.3% released, reduced the number of replies per seconds.

Our contributions are:

1) CoElektra enables programmers to use contextual
values in multi-threaded, embedded applications.

2) Our implementation is free software and can be
downloaded from http://www.libelektra.org.

3) In a case study we described our experience with
embedded hardware running a web server.

4) We analyzed the performance in multi-core and
single-core setups and evaluated the memory foot-
print.

These contributions are significant, because up to now
context-awareness had a much larger performance impact and
were mainly available in non-embedded systems.

ACKNOWLEDGMENTS

Many thanks to my colleague of my institute. I want to give
distinct gratitude to Franz Puntigam for guiding me through the
work, for being extraordinarily responsive to all my concerns
and questions and for proof reading my papers. Additionally,
I would like to thank the anonymous reviewers, Gergö Barany
and Andreas Morhammer for a detailed review of this paper.

REFERENCES

[1] H. Schippers, T. Molderez, and D. Janssens, “A graph-based operational
semantics for context-oriented programming,” in Proceedings of the

2Nd International Workshop on Context-Oriented Programming,
ser. COP ’10. NY, USA: ACM, 2010. [Online]. Available:
http://doi.acm.org/10.1145/1930021.1930027

[2] G. Salvaneschi, C. Ghezzi, and M. Pradella, “Context-oriented
programming: A software engineering perspective,” Journal of Systems

and Software, vol. 85, no. 8, pp. 1801 – 1817, 2012. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S016412121200074X

[3] M. Appeltauer, R. Hirschfeld, M. Haupt, J. Lincke, and M. Perscheid,
“A comparison of context-oriented programming languages,” in
International Workshop on Context-Oriented Programming, ser.
COP ’09. NY, USA: ACM, 2009. [Online]. Available: http:
//doi.acm.org/10.1145/1562112.1562118

[4] P. Costanza, R. Hirschfeld, and W. De Meuter, “Efficient layer
activation for switching context-dependent behavior,” in Modular

Programming Languages, ser. Lecture Notes in Computer Science,
D. Lightfoot and C. Szyperski, Eds. Springer, 2006, vol. 4228, pp.
84–103. [Online]. Available: http://dx.doi.org/10.1007/11860990 7

[5] C. Bockisch, S. Kanthak, M. Haupt, M. Arnold, and M. Mezini,
“Efficient control flow quantification,” in ACM SIGPLAN Notices,
vol. 41. ACM, 2006, pp. 125–138.

[6] E. Tanter, “Contextual values,” in Proceedings of the 2008 Symposium

on Dynamic Languages, ser. DLS ’08. NY, USA: ACM, 2008, pp. 3:1–
3:10. [Online]. Available: http://doi.acm.org/10.1145/1408681.1408684

[7] M. Raab and F. Puntigam, “Program execution environments as
contextual values,” in Proceedings of 6th International Workshop on

Context-Oriented Programming. NY, USA: ACM, 2014, pp. 8:1–8:6.
[Online]. Available: http://doi.acm.org/10.1145/2637066.2637074

[8] A. Beilis, http://cppcms.com, accessed January 2015.

[9] M. Raab, “A modular approach to configuration storage,” Master’s

thesis, Vienna University of Technology, 2010.

[10] M. Jung, R. Laue, and S. A. Huss, “A case study on partial evaluation
in embedded software design,” in Software Technologies for Future

Embedded and Ubiquitous Systems, 2005. SEUS 2005. Third IEEE

Workshop on, May 2005, pp. 16–21.

[11] T. Watanabe and S. Takeno, “A reflective approach to actor-
based concurrent context-oriented systems,” in Proceedings of 6th

International Workshop on Context-Oriented Programming, ser.
COP’14. New York, NY, USA: ACM, 2014, pp. 3:1–3:6. [Online].
Available: http://doi.acm.org/10.1145/2637066.2637069

[12] O. Riva, C. di Flora, S. Russo, and K. Raatikainen, “Unearthing design
patterns to support context-awareness,” in Pervasive Computing and

Communications Workshops, 2006. PerCom Workshops 2006. Fourth

Annual IEEE International Conference on, March 2006, pp. 5 pp.–387.

[13] M. von Löwis, M. Denker, and O. Nierstrasz, “Context-oriented
programming: Beyond layers,” in Proceedings of the 2007 International

Conference on Dynamic Languages, ser. ICDL ’07. NY, USA: ACM,
2007, pp. 143–156. [Online]. Available: http://doi.acm.org/10.1145/
1352678.1352688

