
Program Execution Environments as Contextual Values

Markus Raab
Vienna University of Technology
Institute of Computer Languages

Austria
markus.raab@complang.tuwien.ac.at

Franz Puntigam
Vienna University of Technology
Institute of Computer Languages

Austria
franz@complang.tuwien.ac.at

ABSTRACT
Context-oriented programming (COP) provides a very in-
tuitive way to handle run-time behavior varying in several
dimensions. However, COP usually requires major language
extensions and implies a considerable performance loss. To
avoid language extensions we propose to specify program ex-
ecution environments as contextual values in separate units.
A tool translates such specifications into C++ classes us-
able in the rest of the program. Without the need of multi-
ple dispatch, the performance can largely profit from simple
caching. Furthermore, it is easy to support debugging and
store contextual values in configuration files.

Categories and Subject Descriptors
D.1.5 [Programming Techniques]: Object-oriented Pro-
gramming; H.2.3 [Languages]: Persistent programming lan-
guages; D.2.5 [Testing and Debugging]: Debugging aids

General Terms
Design, Languages, Performance

Keywords
configuration specification, code generation, context oriented
programming, contextual value, program execution environ-
ment, debugging, configuration file, persistence, benchmark

1. INTRODUCTION
Context-oriented programming (COP) is a technique pro-

viding multi-dimensional separation of concerns [8]. Code is
executed in a dynamic scope depending on layers.
Contextual values are variables depending on the context

in which they are read and modified [9]. They can be limited
in their visibility and are no longer potentially global.
We propose to use program execution environments (in a

broad sense) as contextual values. They include the envi-
ronment variables as well as command line arguments and
values retrieved from configuration files.

COP ’14, Uppsala, Sweden
Copyright is held by the owner/author(s). Publication rights licensed to
ACM.
ACM 978-1-4503-2861-6/14/07. . . $15.00
http://dx.doi.org/10.1145/2637066.2637074 .

For example, let us use external configuration settings via
getenv to determine the program execution environment. We
have to be careful: At the presence of command line argu-
ments or after dynamic reconfiguration the settings valid in
the new context differ from those received with getenv. In
some parts of the program we have more information and
the context is more specific than in others. To reduce the
danger of assuming wrong context information it is desirable
to use program execution environments based on COP.
We propose to specify the values of the program execution

environment in a separate unit. Such specifications contain
placeholders, each representing a dimension of the context:

[/% language %/ person / greeting]
type = String

In this example, greeting is a contextual value of type String
and %language% a placeholder to be substituted in contextual
interpretations. A code generator produces the classes Person
and Greeting. Through them we can activate layers (thereby
changing the view, maybe by setting the language to Ger-
man) and modify the value of greeting.
These are our contributions:

• We enable programmers and systems engineers to ap-
ply contextual values in their familiar language.

• We provide library support to use contextual values
specified in configuration files, command lines, etc.

• We take care to uniquely name values with respect to
their context for a better support of debugging.

• We briefly analyze the performance situation and sug-
gest a simple, but effective optimization technique.

These contributions are of practical relevance. Many other
approaches require major language extensions or depend on
non-standard language features like multiple dispatch and
dynamic scoping [4, 3]. It is well-known that COP often has
a considerable negative impact on the performance [1] and
ease of debugging. Our approach addresses these problems.
Still, our approach is flexible and open for extensions. In our
work we use C++, but it should be possible to do almost
the same in other languages as well.

2. CONCEPTION
Our concept evolved from Elektra, a configuration man-

agement system developed and commercially applied by one
of the authors [7]. Elektra is essentially a library providing
access to configuration data according to several standards.

generate

execution
environm.

depends on

load
and

store

key set

access

contextual
value spec.

context-aware
class

code generator Elektra library

context-aware
access

Figure 1: Integration of Elektra

It is by no means a COP system. But, the Elektra library
turned out to be useful to administer contextual values.
Figure 1 shows how Elektra is integrated in our approach:

A tool generates a context-aware class for each specification
of a contextual value. This class uses the Elektra library to
access context information stored in the key set, the data
structure of Elektra. Hidden from the user, Elektra takes
care that every contextual value will get its correct value
derived from the program execution environment. Through
the library we can also reload the environment and persis-
tently store contextual values.
To put context-aware objects (i.e., instances of context-

aware classes) into a specific context, programmers define
layers and specify which contextual value depends on which
layer. The activation and deactivation of layers at run-time
will have direct effect to each of those contextual values.

2.1 How to use Context Information
We slightly expand the above example:

[/% language %/% country %/% dialect %/ person / greeting]
type = String

[/% country %/ person / visits]
type = Integer
default =0

Here, greeting and visits are contextual values, but person
is not. Classes are generated for Person, Greeting and Visits
(class names begin with uppercase letters), where Person has
the member variables greeting and visits of the types Greeting
and Visits, respectively. Since no default value is specified
for greeting, we have to define the value somewhere else. We
do so in a configuration file containing a key/value pair for
each value in each context:

/%/%/%/ person / greeting =Hi!
/ German /%/%/ person / greeting = Guten Tag!
/ German / Austria /%/ person / greeting = Servus !
/ German / Austria / traditional / person / greeting =Griaß enk!

Here, % denotes an empty name. We assume this configura-
tion file to be loaded at the begin of the program. Next, we
have to specify layers as hand-written classes like this one:

class CountryAustriaLayer : public Layer
{
public :

string id () const { return " country "; }
string operator ()() const { return " Austria "; }

};

For simple use we overload the function call operator. Of
course, the strings can be computed and need not be con-
stant. We assume that there are similar classes for other
countries, languages and dialects as well.
The following function shows the use of contextual values:

void visit (Person & p) {
p. context (). with < CountryAustriaLayer >()

.with < LanguageGermanLayer >()([&] {
cout << " visit " << ++p. visits

<< " in " << p. context ()[" country "]
<< ": " << p. greeting << endl;

});
cout << p. greeting << endl;

}

Every contextual value allows access to its context us-
ing the method context(). Each use of the member function
template with specifies a layer for the next application of
the overloaded function call operator “()” to a lambda ex-
pression. These layers are active only while executing the
lambda expression. An execution of the function visit pro-
duces this output:

visit 1 in Austria: Servus!
Hi!

Language and country are known, but the dialect is un-
known when producing the first line. No context informa-
tion is available when producing the second line. As a side-
effect, the value of visits is incremented by one, but only in
the context of Austria, not in any other context.

2.2 More on Layers
Simple implementations of layers like CountryAustriaLayer

just return a constant string. That is the most common
case. In the following example, the country is determined
by invoking lookupCountry (e.g., utilizing the current GPS po-
sition) whenever the layer is activated:

class CountryGPSLayer : public Layer
{
public :

CountryGPSLayer () : m_country (lookupCountry ()) {}
string id () const { return " country "; }
string operator ()() const { return m_country ; }

private :
string m_country ;

};

The context itself sometimes depends on contextual val-
ues. For example, we use a profile as contextual value, and
a set of other contextual values depends on the profile. To
some extent we can specify in the program execution envi-
ronment which profile shall be active:

[/% application %/ profile]
type = String
opt=p
opt/ long = profile

Because of opt and opt/long this contextual value is preferably
taken from the command line options -p and --profile than
from the configuration file. Now we can use a simple layer
that will return the contextual value passed by the profile:

class ProfileLayer : public Layer
{
public :

ProfileLayer (String const & profile) :
m_profile (profile) {}

string id () const { return " profile "; }
string operator ()() const { return m_profile ; }

private :
String const & m_profile ; // contextual value

};

Such a profile is typically valid for the whole application.
The following implementation of the main function shows
how to set up the whole system. We have to create the con-
text and a key set as provided by the Elektra library. The
key set gets initialized with data specified in configuration
files (automatically found by Elektra) and command line
arguments. Our generator creates (beside the classes corre-
sponding to the names in the execution environment) also a
class Environment which provides access to the top-level enti-
ties like profile and person. We need an instance of Environment
depending on the context and key set. Using the member
function template activate of the context, we activate two
layers globally. Essentially, activate does the same as with,
but at the global level instead of locally.

int main(int argc , char ** argv)
{

KeySet ks;
parseConfigfiles (ks);
parseCommandline (ks , argc , argv);
Context c;
Environment env(ks , c);
c.activate < MainApplicationLayer >();
c.activate < ProfileLayer >(env. profile);
// the rest of the program
// e.g., visit (env. person);

}

2.3 Code Generation
Above code is written by the user. Let us have a look at

the code generated from specifications, e.g. for Visits:

class Visits : public Integer
{
public :

Visits (KeySet & ks , Context & context) :
Integer (ks , context ,

Key("", KEY_VALUE ,
"/% country %/ person / visits ",
KEY_META , " default ", "0", KEY_END)) {}

using Integer :: operator =;
};

Even though such classes could be written directly by pro-
grammers, the specification gives us a much more concise
and powerful way to achieve the same.

2.4 Predefined Classes
The class Context plays a central role in activating and

deactivating layers as well as interpreting contextual values.
Classes of contextual values and Context are organized in an
observer pattern [5], where Context is the subject, and the
contextual values are the observers. This is, the context
informs contextual values about changes. Since placeholders
in the specifications state which layers a contextual value
depends on, the contextual values can subscribe themselves
to the needed notifications.

class Context : public Subject
{
public :

template <typename L> void activate (...);
template <typename L> void deactivate (...);
template <typename L> Context & with (...);
template <typename L> Context & without (...);
string evaluate (string const & spec) const ;
Context & operator ()(function const & f);
// ...

};

As shown above, activate and with activate new layers
(globally or for a specific block). Accordingly, deactivate and
without deactivate layers. Arguments are forwarded to a con-
structor of L, where L is derived from Layer and gets instanti-
ated within the function. In this context, evaluate interprets
a name with placeholders. Thereby, a placeholder is ignored
if no matching layer id is present. The function call opera-
tor Context::operator() calls the function given as argument in
the scoped context set up by the use of with() and without().
Each layer must implement this interface:

class Layer
{
public :

virtual string id () const = 0;
virtual string operator ()() const = 0;

};

The return value of id corresponds to the name of the place-
holder. This identifier must be globally unique. All in-
stances of Layer with the same id are expected to represent
the same layer, and on activation of one of them will override
that of the others. The method Layer::operator() will be used
during the context evaluation as the layers contribution.

2.5 Ambiguity
Even though we do not use the multiple dispatch tech-

niques, the multi-dimensional value lookup still introduces
a source for ambiguity. Suppose we have a specification
/%manufacturer%/%model%/serial and the configuration values:

/hp /%/ serial =1000
/%/ EliteBook 8570/ serial =1234

When both layers with the results hp and EliteBook 8570 are
active, either of the values could be taken. Because no vari-
ant is more intuitive than the other, we decided not to sup-
port such ambiguities. Hence, % stands only for layers with
no output or empty layers.
For more flexibility, specifications can contain placeholder

groups of the syntax %layerid layerid ...%. Corresponding
keys can specify names of none, one, two, . . . or all layers,
filling up the layer ids from left to right. As usual, in the
key % stands for no name. One name is given by %name, two
names by %name%name, and so on. This is, each name belonging
to a placeholder group begins with %.
E.g., in the specification /%manufacturer model%/serial, a non-

empty layer for model can be specified only if also a layer for
manufacturer is specified, and no ambiguity arises.
As a further example, let us consider the specification

%manufacturer category model% with the following configuration:

/% hp/ serial =1 XXX
/% hp% Notebook % EliteBook 8570/ serial =1321
/% hp% MobileWorkstation % EliteBook 8570/ serial =1234

When the layer category is inactive, we unambiguously get
the serial number 1XXX, regardless of the active layer model.

3. IMPLEMENTATION ISSUES
In this section we will evaluate four implementation tech-

niques that can be used with our approach. Every technique
fulfills the requirement that whenever the contextual value
is accessed it will correctly deliver its value under the inter-
pretation of the current context. In all techniques, needed

●●

●

●●
●

●

●●●
0

200

400

600

co
nt

ex
t c

m
p

no
if

co
nt

ex
t i

f

co
nt

ex
t i

f o
pt

co
nt

ex
t i

f o
pt

 a
to

m
ic

co
nt

ex
t n

oi
f a

rr
ay

 s
um

co
nt

ex
t n

oi
f c

m
p

ar
ra

y

co
nt

ex
t n

oi
f s

um

co
nt

ex
t n

oi
f v

ir
tu

al

na
tiv

e
cm

p
no

if

na
tiv

e
no

if
su

m

T
im

e
[s

]

Figure 2: benchmark

updates in the event of context changes are done using the
observer pattern as outlined in the Section 2.
Current techniques implementing COP features need mul-

tiple dispatch [4] or counter based control flow [3]. Usually,
the costs of COP features are compared in applications us-
ing such highly dynamic concepts. Conclusions based on
these comparisons are valid for many applications, but are
not suitable for others, including algorithmic applications in
a more static setting. We will evaluate different implemen-
tations under the assumption that accesses to contextual
values occur much more often than layer activations.
We conducted the benchmarks on a hpR© EliteBook 8570w

using the CPU IntelR© Core
TM

i7-3740QM @ 2.70GHz. The
operating system is GNU/Linux Debian Wheezy 7.5. We
used, unless noted otherwise, the gcc compiler Debian 4.7.2-5
with the options -std=c++11, -O2 and -Dopt=unlikely. We
measured the time using gettimeofday. We executed each
benchmark eleven times and show the median value (except
in the graphs where all data are displayed).
Our micro-benchmark represents algorithmic and arith-

metical problems that frequently access values:

Integer :: type add_native (uint32_t const & i1 ,
uint32_t const & i2)

{ return i1+i2; }

This function is called 100 billion (=iterations) times in the
following loop:

for (long long i=0; i< iterations ; ++i)
{

x ^= add_native (val , val);
}

This loop takes 27.16 seconds (see data labeled “native cmp
noif” in figures 2 and 3). When the values are summed up
instead of using xor, the loop takes 0.00 seconds (see “native
noif sum” in Figure 2) because the compiler replaces the loop
by a single arithmetical operation.
We compare this native performance with our approach,

using the same loop, but using the contextual value Integer
instead of the native value uint32_t:

Integer :: type add_contextual (Integer const & i1 ,
Integer const & i2)

{ return i1+i2; }

3.1 (Atomic) Branches
A naïve approach to detect context changes is by checking

a tidy flag on every access of the contextual value:

operator uint32_t () const
{ if(m_context_changed) { update (); }

return m_cache ; }

A type conversation operator in C++ allows contextual val-
ues to be used where a uint32_t is expected. This specific
implementation adds two additional branches for each call
of add_contextual with devastating results: The loop needs
271.62 seconds (it is one hundred times slower, see “context
if” in Figure 2). The runtime can be improved to 190.13
seconds (see “context if opt” in Figure 2) by giving the com-
piler optimization hints to specify which conditional branch
is taken more often.
The use of an if for every access yields additional ben-

efits. Firstly, it makes context changes lazy and avoids
updates for rarely used contextual values. Secondly, when
the contextual value uses std::atomic<bool> instead of bool for
m_context_changed, the contextual values are multi-thread safe.
Unfortunately, atomicity does not come without extra costs:
Needing 651.92 seconds the runtime is more than doubled
when using an atomic type (see “context if opt atomic” in
Figure 2). Surprisingly, with clang (version 3.5-1 exp1 us-
ing option -O3) the runtime is only 81.42 seconds both for
std::atomic<bool> and volatile bool. But, the results are still
far from desired.
Another major drawback of the if-solution is that the

compiler cannot optimize away arithmetic loops. Therefore,
we did not use it in our implementation.

3.2 Virtual Function Calls
A further implementation technique to provide contextual

values is by switching classes at runtime. To call the correct
class, a virtual function call is needed:

virtual operator uint32_t () const
{ return m_cache ; }

Virtual function calls usually outperform switch statements.
But, virtual function calls make some optimizations (es-
pecially inlining) impossible, leaving us with a runtime of
298.8 seconds (see “context noif virtual” in Figure 2). Opti-
mizations that completely get rid of the loop are impossible.
Hence, we did not use virtual function calls, too.

3.3 Member Arrays
Another way is to have an array that contains values for

every context. Context switches will then change the array
index. On access, the array is accessed using the given index:

operator uint32_t () const
{ return g_arr [m_cache]; }

Arrays give us very promising results: 27.16 seconds (see
“context noif cmp array” in Figure 2 and 3). Additionally,
optimizations can completely eliminate the loop.
But an array to cache all possibilities has an important

drawback: Done in a naïve way it consumes a large amount
of memory for each contextual value, because the number of
layer combinations is huge. We left the exploration of this
technique as a future work.

●

●

●

●

●

27.14

27.16

27.18

co
nt

ex
t c

m
p

no
if

co
nt

ex
t n

oi
f c

m
p

ar
ra

y

na
tiv

e
cm

p
no

if

T
im

e
[s

]

Figure 3: comparison to native performance

3.4 Member Variables
The simplest implementation is the use of one memory

cell per contextual value and returning its content directly:

operator uint32_t () const
{ return m_cache ; }

The runtime of this technique has a median of 27.16 seconds
(see “context cmp noif” in figures 2 and 3). Still, the tech-
nique uses only a minimal amount of additionally memory
(one native type per contextual value). So we decided to use
this simple implementation technique.
Of course, returning values of member variables are not

the only costs of COP. We must also compute the values
when activating layers. But, we expect those costs to be
rather independent of the implementation technique.

4. EVALUATION
Context-oriented programming typically has a major draw-

back: Performance penalties of 75% (cj and ContextL per-
formed better in specific cases) to 99% [1] currently makes
COP unattractive for some types of real world applications.
Performance is one of the major advantages of our approach.
There are also others like improved debugging support.

4.1 Performance
One slogan in the C++ community is “you don’t pay for

what you don’t use”. As we see in Figure 3 our implementa-
tion (“context cmp noif”) has zero overhead compared with
native non-contextual values although (or because) of the
simple implementation based on member variables. The
reason is that the compiler can perform aggressive optimiza-
tions eliminating the performance overhead. There is only
small memory overhead consisting of a native value and a
reference to the context for each contextual value.
We evaluate the impact of the number of active layers at

runtime by activating zero to nine layers. We use the same
loop as before in the scoped block of the with statements.
For example, using two layers the setup looks as follows:

s. context (). with <Layer1 >(). with <Layer2 >()([&] {
s.bm = value ;
Integer :: type x = 0;
for (long long i=0; i< iterations ; ++i)
{ x ^= add_contextual (s.bm , s.bm); }
dump << x << endl; });

●

●
●

●

●

● ●

27.14

27.16

27.18

w
ith

 0
 la

ye
r

w
ith

 1
 la

ye
r

w
ith

 2
 la

ye
r

w
ith

 3
 la

ye
r

w
ith

 4
 la

ye
r

w
ith

 5
 la

ye
r

w
ith

 6
 la

ye
r

w
ith

 7
 la

ye
r

w
ith

 8
 la

ye
r

w
ith

 9
 la

ye
r

T
im

e
[s

]

Figure 4: access with active layers

As we see in Figure 4, increasing the number of active layers
does not noticeably affect the performance. All differences
are within 0.02 seconds. Because of the huge number of loop
iterations (100 billion) the costs for accessing contextual val-
ues are dominant, those for activating layers are negligible.

4.2 Debugging support
Our specifications introduce names. The uniqueness of

these names turned out to be very valuable for debugging.
Logging: Simple logging facilities can capture under which
context a variable is accessed. We found bugs in the code
easily by tracing all unique names on every access.
Backtraces: They are enriched by telling us unique names:
#3 0 x0000000000407a56 in operator () at first .cpp :1521

i = @0x7fffe36b69a0 : { ...
m_evaluated_name = "/ german / germany /%/ test" }

Breakpoints: They can respect the context as condition:
break 1520 if i. getEvaluatedName ()

. compare ("/ german / germany /%/ test") == 0

Assertions: They can assure that a contextual value is in
that context we think it is, e.g. the language is German:
assert (i. context ()[" language "] == " german ");
assert (i. getEvaluatedName () == "/ german /%/%/ test");

The second variant is preferable. It implicitly ensures that
all other layers affecting the contextual value are inactive.
When the specification changes, the assertion will be trig-
gered instead of pretending false safety.
Elektra 0.8.6 (see http://www.libelektra.org) includes

the functionality proposed in the present paper. Our experi-
ence from using it shows that unique names have a positive
influence on the readability of the code.

5. DISCUSSION AND FUTURE WORK
We already saw that the specification provides a short and

easy-to-use syntax that need not be available in the host
language. Additionally, it has the following advantages:

• Specifications can be used to generate further artifacts
like configuration files and documentation.

• Language-independent specifications allows us to add
support for new programming languages.

• The generation of contextual classes hides many nasty
details like constructor parameters and assignment op-
erations that would not be obvious to programmers.

• Using meta-data for contextual values as well as con-
necting observers is error-prone when done by hand.

• It would be tedious to write corresponding class hier-
archies by hand. They typically consist of hundreds of
classes, and their maintenance would be difficult.

The specification includes information about layers a con-
textual value depends on. It is in the hands of the program-
mer to design it properly. In performance critical code, un-
necessary updates can be avoided. The specification allows
us to declaratively describe the desired situation.
As a future work, the specification language can be im-

proved in many ways. Maybe, it would be useful to provide
a specification for layers, too.

5.1 Support of Persistence
Our approach interacts closely with the non-functional

programming concern of persistence. By modifying con-
figuration files, the user or systems engineer has complete
control over initial values at startup time. The programmer
can determine a default value in the specification that will
be used when no persistent value is available, e.g. when a
layer is active that was never used before.
As a future work, we will find a formalism to define and

validate persistent data directly in the specification. More
rigorous evaluations of the performance of layer switching,
initial retrieval of the contextual values and real world ap-
plications also remain as further work.

6. RELATED WORK
Contextual values were proposed by Löwis et al. [10]. Tan-

ter [9] investigated the topic in-depth. Different from our ap-
proach, those contextual values need changes in the Scheme
interpreter. Tanter concentrates on call-by-value parameter
passing. Although our approach also supports call-by-value
parameter passing by copying values, it is only of limited in-
terest to us because the connection to the program execution
environment gets lost.
The Cartesian approach to context [6] uses a similar

paradigm with a formal background. The main difference
is the use of an n-dimensional table with lazy computation
instead of our one-dimensional key set with eagerly com-
puted values. While the Cartesian approach is theoretically
more powerful, much beyond a declarative storage, it has
the disadvantage that its contents can neither be eagerly
computed nor serialized. However, serialization is necessary
for handling program execution environments.
Costanza et al. [4] implemented ContextL as an exten-

sion to CLOS and rely on its features: dynamic class gen-
eration, multiple inheritance, dynamically scoped variables,
and multiple dispatch. In most languages those dynamic
features do not exist. From this feature list, C++ supports
only multiple inheritance. The use of such features implies a
significant overhead, especially because they rule out many
possible optimizations that we relied upon in our work.
Dynamic aspect weaving (e.g., in the Steamloom virtual

machine [2]) adds constructs for activation of partial pro-
gram definitions. Different from our approach, it only works
with a specific virtual machine.

7. CONCLUSION
We saw that, using our approach, the user can profit from

zero overhead (without layer switches) on any number of
active layers. A declarative specification of contextual val-
ues takes away the burden of writing many similar classes
while ensuring static type safety. Additionally, unnecessary
cache updates on layer switches are avoidable by specifying
dependences between values and contexts.
Specifications in combination with active layers introduce

unique names for all contextual values in each context. These
names support new ways of debugging contextual values.
Previously surprising behavior becomes obvious.
Elektra 0.8.6 (see http://www.libelektra.org) is freely

available and can be used to try out the proposed approach.

8. REFERENCES
[1] Malte Appeltauer, Robert Hirschfeld, Michael Haupt,

Jens Lincke, and Michael Perscheid. A comparison of
context-oriented programming languages. In
International Workshop on Context-Oriented
Programming, COP ’09, NY, USA, 2009. ACM.

[2] Christoph Bockisch, Michael Haupt, Mira Mezini, and
Klaus Ostermann. Virtual machine support for
dynamic join points. In Proceedings of the 3rd
International Conference on Aspect-oriented Software
Development, AOSD ’04, pages 83–92, NY, USA,
2004. ACM.

[3] Christoph Bockisch, Sebastian Kanthak, Michael
Haupt, Matthew Arnold, and Mira Mezini. Efficient
control flow quantification. In ACM SIGPLAN
Notices, volume 41, pages 125–138. ACM, 2006.

[4] Pascal Costanza, Robert Hirschfeld, and Wolfgang
De Meuter. Efficient layer activation for switching
context-dependent behavior. In DavidE. Lightfoot and
Clemens Szyperski, editors, Modular Programming
Languages, volume 4228 of Lecture Notes in Computer
Science, pages 84–103. Springer, 2006.

[5] Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides. Design patterns: elements of reusable
object-oriented software. Pearson Education, 1994.

[6] John Plaice and Blanca Mancilla. The cartesian
approach to context. In Proceedings of the 2Nd
International Workshop on Context-Oriented
Programming, COP ’10, NY, USA, 2010. ACM.

[7] Markus Raab. A modular approach to configuration
storage. Master’s thesis, Vienna University of
Technology, 2010.

[8] Hans Schippers, Tim Molderez, and Dirk Janssens. A
graph-based operational semantics for
context-oriented programming. In Proceedings of the
2Nd International Workshop on Context-Oriented
Programming, COP ’10, NY, USA, 2010. ACM.

[9] Éric Tanter. Contextual values. In Proceedings of the
2008 Symposium on Dynamic Languages, DLS ’08,
pages 3:1–3:10, NY, USA, 2008. ACM.

[10] Martin von Löwis, Marcus Denker, and Oscar
Nierstrasz. Context-oriented programming: Beyond
layers. In Proceedings of the 2007 International
Conference on Dynamic Languages, ICDL ’07, pages
143–156, NY, USA, 2007. ACM.

