
A Modular Approach to
Configuration Storage

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Markus Raab
Matrikelnummer 0425830

an der

Fakultät für Informatik der Technischen Universität Wien

Betreuung

Betreuer: Ao.Univ.Prof. Dipl.-Ing. Dr. Franz Puntigam

Wien, 29.09.2010

(Unterschrift Verfasser) (Unterschrift Betreuer)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

i

Declaration

Markus Raab
Kandgasse 7/2/4/8, 1070 Wien

”Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwendeten Quellen
und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit – einschließlich Tabellen,
Karten und Abbildungen –, die anderen Werken oder dem Internet im Wortlaut oder dem Sinn nach
entnommen sind, auf jeden Fall unter Angabe der Quelle als Entlehnung kenntlich gemacht habe.”

(Ort, Datum) (Unterschrift)

iii

Acknowledgements

Many thanks to Kira Gysel for her courtesy and assistance in the beginning of the work.
I would like to thank Philipp Gühring for his valuable tips on binary values and forensic logging and

also to Mathieu Lacage for his assistance on the dlopen issue. Special thanks to Kai-Uwe Behrmann, who
is one of the pioneer users of Elektra.

Furthermore, I would like to thank the people of Debienna who were always there to give a helping
hand. We discussed many topics concerning configuration. In particular, I would like to mention Christian
Amsüss for his ideas for renaming keys and helping on character encoding as well as Albert Dengg for
many technical details, especially for the hints on journalling. Harald Geyer was always very helpful
for all kinds of questions and gave valuable tips related to LATEX and layout. Special thanks to Andreas
Leitgeb for supporting me with proof-reading. Nedko Tantilov sustained me with concrete suggestions.

I want to give distinct gratitude to Ao.Univ.Prof. Dipl.-Ing. Dr. Franz Puntigam for guiding me
through the work and for being highly responsive to all my concerns and questions.

Last, but not least, I am deeply grateful for the backing I got from my family.
I do apologise to all the people I have forgotten to mention here!

iv

Zusammenfassung

Programmbibliotheken wie Elektra ermöglichen allen lokal installierten Programmen den Zugriff

auf eine gemeinsame Konfigurationsdatenbank. Benutzer von Applikationen wünschen, dass ihre Pro-

gramme stärker in das Gesamtsystem integriert sind, dass die Einstellungen – durch Benachrichtigun-

gen über Änderungen – immer am neuesten Stand gehalten werden, dass ihre bevorzugten Konfigura-

tionsformate unterstützt werden und dass sie trotzdem die Gewissheit haben, dass beim Speichern der

Optionen nur funktionierende Einstellungen in die Konfigurationsdatenbank gelangen. Das konkrete

Problem dabei ist, dass die genauen Anforderungen je nach Applikation und Betriebssystem variieren

und dass es oftmals gleichwertige oder konkurrierende Möglichkeiten gibt, den Aufgaben gerecht zu

werden.

In dieser Diplomarbeit wurde das Problem durch Modifikationen von Elektra gelöst. Die einzel-

nen Aufgaben werden in austauschbaren, wiederverwendbaren Plugins implementiert. Mehrere solche

Plugins zusammen bauen einen Zugriff auf Teile der Konfigurationsdatenbank auf, welche dann ge-

meinsam die gesamten Anforderungen erfüllen.

Zur Überprüfung dieses Ansatzes wurde eine Reihe von Plugins implementiert und in verschiede-

nen Szenarien versuchsweise eingesetzt. Dabei zeigt sich, dass sich beim Herausschreiben der Konfi-

guration Vorteile ergeben, wenn die Überprüfung der Struktur der Optionen und die Validierung der

einzelnen Werte in zwei Phasen gegliedert sind. Dadurch wird ermöglicht, verschiedenste Validierun-

gen – mitunter auch applikations- oder plugin-spezifisch – zu kombinieren. Es wurden verschiedene

Methoden erprobt, wie solche Plugins entwickelt werden können. Dabei stellte sich heraus, dass Plug-

ins auch sehr schnell realisiert werden können, wenn sie das Potential von bereits existierenden Plugins

und Bibliotheken nutzen. Es ist zudem elegant möglich, vom Betriebssystem abhängige Teile von un-

abhängigen zu trennen. Durch das Einhängen der Plugins in die gemeinsame Konfigurationsdatenbank

während der Laufzeit werden die Eigenschaften und Funktionalitäten für diese Teile verändert. Aber

durch Überprüfung von Kontrakten, welche die Plugins exportieren, kann trotz der zusätzlichen Flexibi-

lität eine reibungslose Zusammenarbeit garantiert werden. Plugins können sich sogar darauf verlassen,

dass bestimmte Aktionen bereits vorher durchgeführt wurden.

v

Abstract

Libraries like Elektra provide access to a shared configuration database across all locally installed

applications. Users prefer applications integrated well within the system they use. They are in favour

of settings that are always up to date. Users also want their favourite configuration file formats to

be supported. They want a guarantee that the system storing their options only accepts a working

configuration. The concrete problem is that the specific requirements vary according to the programs

and the operating system. Similar or competing possibilities exist to achieve specific tasks.

We address the problem by modifying Elektra in this thesis. A reusable, exchangeable plugin

cares for a specific concern. Several plugins together build up the access to a part of the configuration

database that deals with the complete users’ requirements.

We implemented a number of plugins to verify the approach. We tested the implementations in

different use cases. It soon became clear that checking the configuration before storing is much more

flexible if the validation of the structure and the values are separated in two phases. It facilitates

combinations of several checks. Occasionally these checks are made specifically for an application or

plugin. We evaluated and tried different ways in which to implement such plugins. We came to the

conclusion that plugins can be realised quickly if the potential of existing plugins and libraries is used.

Code needing operating system specific facilities can be easily separated into other plugins. As a result

of mounting the plugins, the capabilities and features of the shared configuration database changes. But

because of checking contracts exported by plugins, the interplay of plugins is guaranteed even though

the system is now much more flexible. It even goes so far that plugins can count on actions taken by

other plugins.

Contents

Contents vii

1 Introduction 1
1.1 Preliminaries . 1

1.1.1 Definitions . 1
1.1.2 Conventions . 1

1.2 Elektra . 2
1.2.1 Motivation . 2
1.2.2 Classes . 4
1.2.3 Concepts . 6

1.3 Work Related to Elektra . 8
1.3.1 Configuration Libraries . 8
1.3.2 Other Projects . 9
1.3.3 Key Databases . 9

1.4 Goal of this Thesis . 10
1.5 Methodology . 11

1.5.1 Development Methods . 11
1.5.2 Tools . 11
1.5.3 Benchmark Methods . 12

2 Approach 13
2.1 Problem . 13

2.1.1 File System Semantics . 13
2.1.2 Missing Modularity . 15
2.1.3 Missing Features . 16

2.2 New Approach . 17
2.2.1 Metadata . 18
2.2.2 Contracts . 20
2.2.3 Consequences . 22

2.3 Choices . 25

vii

viii CONTENTS

2.3.1 Storage Plugins . 25

2.3.2 Resolver Plugins . 26

2.3.3 Cross-Cutting Concerns . 27

2.3.4 Ordering . 29

3 Implementation 33
3.1 Architecture . 33

3.1.1 API . 33

3.1.2 Concepts . 35

3.1.3 Modules . 36

3.1.4 Mount Point Configuration . 38

3.2 Data Structures . 40

3.2.1 Introduction . 40

3.2.2 Metadata . 41

3.2.3 KeySet . 42

3.2.4 Trie vs. Split . 45

3.3 Error Handling . 46

3.3.1 Terminology . 46

3.3.2 Error Information . 48

3.3.3 Exceptions . 50

3.4 Algorithm . 52

3.4.1 Introduction . 52

3.4.2 kdbGet . 54

3.4.3 kdbSet . 57

4 Plugins 61
4.1 Introduction . 62

4.1.1 Interface . 62

4.1.2 Contracts . 63

4.2 Filter . 66

4.2.1 Encoding . 66

4.2.2 Reversibility . 68

4.2.3 Null values . 69

4.3 Storage . 69

4.3.1 Dump Storage . 71

4.3.2 Limited Storage . 72

4.3.3 Ordering of Keys . 73

4.3.4 Other Representations . 75

4.4 Pluggable Checker . 77

4.4.1 Introduction . 77

CONTENTS ix

4.4.2 Checker Plugins . 78

4.4.3 Apply Metadata . 79

5 Evaluation 83
5.1 Development Time . 83

5.1.1 On Using Configuration Libraries . 83

5.1.2 On Using Grammars . 84

5.2 Modularity . 86

5.2.1 Separation of Non-Portable Code . 86

5.2.2 Pluggable Types . 86

5.2.3 Cross-Cutting Concerns . 88

5.2.4 Conclusion . 88

5.3 Run Time . 89

5.3.1 Setup . 89

5.3.2 Size of the Library . 91

5.3.3 Dependences of the Library . 92

5.3.4 Benchmarks . 92

5.3.5 Conclusion . 93

5.4 Contracts . 95

5.4.1 Contracts Checker . 95

5.4.2 Automation . 95

5.4.3 Limits of Contracts . 96

6 Related and Future Work 97
6.1 Related Work . 97

6.1.1 Pluggable Types . 97

6.1.2 Error Handling . 97

6.1.3 Contracts . 98

6.2 Future Work . 98

6.2.1 Core . 98

6.2.2 Plugins . 99

6.2.3 Transactions using Global Plugins . 99

6.2.4 Concurrency . 100

6.2.5 Discarded Ideas . 101

7 Conclusion 103

Bibliography 105

Index 109

x CONTENTS

List of Figures 112

List of Tables 113

List of Listings 114

CHAPTER 1
Introduction

First we will clarify what definitions we use throughout this thesis. Then we will give an introduction to
the Elektra software project that will accompany the reader throughout. After we have expanded on the
background, we will define the goal of this thesis and describe how to reach it.

1.1 Preliminaries

1.1.1 Definitions

In this thesis we use the following definitions:

Configurations contain user preferences or other application settings.

Configuration storage makes this information permanent. The application will read the configuration
at every start, but it is only stored if a user changes settings.

Key databases are used because of these constraints. They can do fast key lookups and the keys can be
structured hierarchically by defining separators in the key names. Unlike SQL databases, the key
name is the only primary key; there are no foreign keys, and no query language exists.

Global key database provides global access to all key databases of all applications in a system that
wants to access a key database.

1.1.2 Conventions

Throughout the thesis we use the following conventions:

Names of classes and methods are written in typewriter style.

Method names start with a lower case letter and end with brackets, for example, kdbOpen().

1

2 CHAPTER 1. INTRODUCTION

Empty brackets mean that parameters are irrelevant for the description; not that there are none.

Names of classes start with a capital letter, for example, Key.

Names of both, classes and methods, use CamelCase notation.

Newly introduced words that are explained in the surrounding text are written in SMALL CAPS.

Important words that send a central message are written in italics.

Commands, that can be typed inti a shell as a user, start with >.

Both newly introduced and important words will show up in the index at the end.

1.2 Elektra

ELEKTRA is a library implementing access to a global key database. When we refer to Elektra without
a version number, we mean the version 0.8mile4 which is the version developed while working on this
thesis1. Information on Elektra can be found on the website http://www.libelektra.org. To
ELEKTRIFY an application means to change the application so that it uses Elektra afterwards.

Figure 1.1: Elektra’s Logo, thanks to Studio-HB

1.2.1 Motivation

Why Elektra?

Configurations, settings and preferences are hierarchical data structures of keys, each consisting of a name
and a value. They can be used to configure software for the user’s needs. Because these settings stay the
same across restarts of the program, they need to be stored permanently. In the beginning this was done
with primitive text files. Possibilities to structure the text were added later.

Nearly every system developed its own way to read preferences, but some systems can also change
them. Because the graphical user interface can be tweaked in many ways, the most encompassing systems

14th and last milestone

http://www.libelektra.org

1.2. ELEKTRA 3

emerged from this area. Some got a de facto standard for a desktop environment (kconfig, gconfig) or
even an operating system (Windows Registry, Open Directory). But they have a common problem: they
are bound to the platform for which they were developed. On the other hand, there are many libraries that
do a good job in parsing and writing configuration files. These tools are, however, not powerful enough
to keep the configuration independent from the operating system’s details, for example, how to resolve
the file name of the configuration file.

That is where Elektra comes in to fill the gap. On the one hand, Elektra is not tied to any platform or
operating system. On the other hand, Elektra is powerful enough to be useful immediately for what it is
written for: to access configuration.

Why is it important?

The configuration files that represent key databases can have binary or humanly-readable formats. From
the latter, an unmanageable number is established. Developers of programs tend to document the format
of the configuration file extensively. The configuration file may give a special flavour to a specific program
and users frequently need it.

Sometimes limitations in the configuration file even lead to rewrites of software. For example, INETD

has a non-modular flat configuration file that is not extensible because of a limited number of rows. In
order to extend its functionality, the program had to be rewritten with a new approach to configuration:
XINETD emerged. Both of these projects are now almost defined by their configuration files giving them
identity and separating them from each other. Elektra has introduced BACKENDS to support the storage
of key databases in different formats.

Portable and not Portable SoftwarePortable and not Portable Software
JavaJava, Apache, Samba, KDE, /sbin/init, ..., Apache, Samba, KDE, /sbin/init, ...

C
o
n

fi
g

F
il
e

C
o
n

fi
g

F
il
e

C
o
n

fi
g

F
il
e

C
o
n

fi
g

F
il
e

W
in

R
e
g

W
in

R
e
g

C
o
n

fi
g

F
il
e

C
o
n

fi
g

F
il
e

S
in

g
le

F
il
e

S
in

g
le

F
il
e

C
o
n

fi
g

F
il
e

C
o
n

fi
g

F
il
e

S
in

g
le

F
il
e

S
in

g
le

F
il
e

O
p

e
n

D
ir

O
p

e
n

D
ir

C
o
n

fi
g

F
il
e

C
o
n

fi
g

F
il
e

S
in

g
le

F
il
e

S
in

g
le

F
il
e

BackendsBackends

Elektra API :: Abstraction LayerElektra API :: Abstraction Layer

BindingsBindings

Figure 1.2: Elektra as Abstraction Layer, thanks to Avi Alkalay[1]

4 CHAPTER 1. INTRODUCTION

Elektra abstracts configuration so that applications can receive and store settings without carrying
information about how and where these are actually stored. It is the purpose of the backends to implement
these details. What makes the difference is the situation that every program can access any configuration
because of the abstraction. In the example on page 3, Elektra allows an elektrified inetd respective xinetd
to store its configuration in /etc/inetd.conf respective /etc/xinetd.conf. Additionally, each
other program interested in these preferences can access them in a uniform way.

To support a global key database, a mutual agreement on some level is needed. Elektra provides this
common layer with its data structures. Each elektrified application lies on top of this abstraction layer
and it can talk to each part of the global key database using the classes presented next.

1.2.2 Classes

KDBKDB

KeyKeyKeySetKeySet

ClassesClasses

Figure 1.3: Three Classes, thanks to Avi Alkalay[1]

Key

A Key consists of a name, a value and metadata. It is the atomic unit in the key database. Its main purpose
is that it can be serialised to be written out to permanent storage. It can be added to several aggregates
using reference counting. Putting Key objects into other data structures of supported programming lan-
guages presents no problem.

KeySet

The central data structure in Elektra is a KeySet. It aggregates Key objects in order to describe con-
figuration in an easy but complete way. As the name ”set” already implies every Key in a KeySet has
a unique name. A user can iterate over the Key objects of a KeySet. KeySet sorts the keys by their
names. This yields a deterministic order advantage. So, independent of the appending sequence and,
in particular, the number of fetches and updates, KeySet guarantees the same order of the Key objects.
Some configuration storage systems need this property, because they cannot remember a specific order.
On the other hand, any particular order can easily be introduced 2.

2As we will show in Section 4.3.3 on page 73

1.2. ELEKTRA 5

ApplicationApplication

ElektraElektra

BackendBackend

Figure 1.4: Flow of KeySet

The arrows in Figure 1.4 represent the flow of KeySet objects. We see that on the one side back-
ends generate or store a KeySet object and, on the other side, elektrified applications receive and send a
KeySet object. Both sides, as well as the core in between, have the possibility to iterate, update, modify,
extend and reduce the key set. Appending of new or existing Key objects extends the key set. Otherwise
it can be reduced if keys are POPPED out. The Key object becomes independent from the KeySet after-
wards. The user can still change such a key or append it into another key set. The affiliation to a key set
is not exclusive.

Every key in a KeySet object has a unique name. Appending Key objects with the same name will
override the already existing Key object.

KDB

While objects of Key and KeySet only reside in memory, Elektra’s third class KDB actually provides
access to the global key database. KDB, an abbreviation of key database, is responsible for actually storing
and receiving configuration. KeySet represents the configuration when communicating with KDB. The
typical elektrified application collects its configuration by one or many calls of kdbGet(). As soon as
the program finishes its work with the KeySet, kdbSet() is in charge of writing all changes back to the
key database.

This technique has some advantages. First, applications have full control over modifying Key and
KeySet objects without touching the key database. Second, the decision how many KeySet objects the
application administrates is left to the application. It can choose how to split up the KeySet objects. The
main reason for this technique is that for backend development the same data structure is used, and as we
will see, the borderline between application and backend development becomes blurred.

The application adapts the configuration between kdbGet() and kdbSet() in memory. The modifi-
cations are not only faster, they also allow large atomic configuration upgrades, robust merging of settings
and handling of complicated inter-relationships between keys without problematic interstages. Elektrified
applications, however, should be aware of conflicts. It can happen that the key database is changed while

6 CHAPTER 1. INTRODUCTION

working with a KeySet. Then, attempts to use kdbSet() lead to a conflict. KDB detects such situations
gracefully and lets the application decide which configuration should be used3.

1.2.3 Concepts

Key Names

Every Key object with the same name will receive the very same information from the global key
database. The name locates a unique key in the key database. Key names are always absolute; so no
parent or other information is needed. That makes a Key self-contained and independent both in memory
and storage.

Every key name starts with user or system prefixes that spawn two key hierarchies. The shared
SYSTEM CONFIGURATION is identical for every user. It contains, for example, information about system
daemons, network related preferences and default settings for software. These keys are created when
software is installed, and removed when software is purged. Only the administrator can change system
configuration.

Listing 1.1: Examples of valid system key names

system

system/hosts/hostname

system/sw/apache/httpd/num_processes

system/sw/apps/abc/current/default-setting

On the other hand, USER CONFIGURATION is empty until the user changes some preferences. User
configuration affects only a single user. The user’s settings can contain information about the user’s
environment, preferred applications and anything not useful for the rest of the system.

Listing 1.2: Examples of valid user key names

user

user/env/#1/LD_LIBRARY_PATH

user/sw/apps/abc/current/default-setting

user/sw/kde/kicker/preferred_applications/#1

The slash (/) separates key names and structures them hierarchically. If two keys start with the
same key names, but one key name continues after a slash, this key is BELOW the other and is called a
SUBKEY. For example user/sw/apps/abc/current is a subkey of the key user/sw/apps. The key
is not directly below but, for example, user/sw/apps/abc is. keyRel() implements a way to decide
the relation between two keys.

Cascading

CASCADING is the triggering of secondary actions. For configuration it means that first the user configu-
ration is read and if this attempt fails, the system configuration is used as fallback.

3As we will show in Section 3.4.3 on page 59

1.2. ELEKTRA 7

The idea is that the application installs a configuration storage with default settings that can only be
changed by the administrator. But every user has the possibility to override parts of this system config-

uration regarding the user’s needs in the user configuration. To sum up, besides system configuration,
users have their own key databases that can override the settings according to their preferences.

Mounting

MOUNTING allegorises a common technique for file systems. File systems on different partitions or
devices can be added to the currently accessible file system. Mounting is typically used to access data
from external media. A more advanced use case presents mounting a file system that is optimised for
specific purposes, for example, one that can handle many small files well. Mounting also allows us
to access data via network storage. As a result, mounting of file systems has proved to be extremely
successful.

system/system/

apache/apache/

kde/kde/

sw/sw/

apacheapache iniini

fstab/fstab/

fstabfstab

dumpdump

Figure 1.5: Mounting in Elektra

MOUNTING in Elektra[35] specifically allows us to map a part of the global key database to be
handled by a different storage. A difference to file systems is that key names express what file names
express in a file system. And instead of file systems writing to block devices, backends writing to key
databases are mounted into the global key database. Mounting allows multiple backends to deal with
configuration at the same time. Each of them is responsible for its own subtree of the global key database.
In Figure 1.5, we see several such subtrees, for example system/sw or system/sw/apache. Backends,
that are written in bold, handle the configuration in these subtrees. Mounting works for file systems only
if the file system below is accessible and a directory exists at the mount point. Elektra does not enforce
such restrictions.

Environment

Elektra solves the task of accessing the configuration storage. Additionally, an environment gathers
around Elektra to help with minor problems that appear every day. Maybe the administrator needs a cron
job that periodically changes the settings of a service. Maybe the user wants to have an overview of
the whole configuration to learn what can be tweaked. Maybe the developer needs to fully export the

8 CHAPTER 1. INTRODUCTION

configuration the program had when a failure occurred. These tasks have in common that they become
trivial once a programmatic access to a global key database exists.

In this subsection we give an overview of the command-line tool kdb. It is part of Elektra’s envi-
ronment and performs the mentioned tasks. kdb consists of individual subprograms. The programs are
independent, but can access a shared part that provides functionality too specific to be in the library –
for example, pretty printing of error messages and warnings. Most parts of this suite are short programs
which basically call kdbGet(), do something with the data structure and eventually write it back using
kdbSet(). Note that the command-line tool kdb should not be confused with the class KDB.

kdb was rewritten as part of this thesis with a new architecture. Now every part of the application
suite will be able to accept its own command line arguments and will have its own documentation. Also
a completely new feature mount arose.

Only a few commands are enough for daily use. We can retrieve a key by:
> kdb get user/keyname

We store a key permanently with a value given by:
> kdb set user/keyname value

We list all available keys arranged below a key by:
> kdb ls user/keyname

Many other tools beside kdb are possible. They may be more convenient depending on the situation.
Preference dialogues, graphical editors, web-interfaces and web services can all provide access to the
global key database.

1.3 Work Related to Elektra

Settings and preferences are ubiquitous in every software. For this reason, a vast amount of software
has emerged on this topic. Most of the other projects, however, do not devote their work exclusively to
configuration.

1.3.1 Configuration Libraries

We have already mentioned that Elektra provides the features of a configuration library. There are count-
less libraries out there that parse and some even generate configuration files. But there is a big catch:
These libraries do not provide an abstract view of configuration. They require programmers to open the
files themselves or at least to remember the path to them. Such information is itself configuration and
inherently operating system dependent. Therefore, it is not possible to give default values that just work.

Another feature mostly missing in these libraries is cascading. It is not difficult to implement, but
disturbing if it is not available at all or does not work correctly.

1.3. WORK RELATED TO ELEKTRA 9

1.3.2 Other Projects

Uniconf

A project that shares some of the goals with Elektra, but uses a different approach is UNICONF[34,
26]. Besides a stand-alone library it supports a daemon mode. With the daemon running, it has the
disadvantage of protocol overhead and a single point of failure. On the other hand, Uniconf can also
notify applications when configuration files change and can work in a distributed mode. The project does
not solve the problem of how to configure the configuration system. So we still have to pass a so-called
MONIKER STRING[26] that contains the knowledge where to find the configuration. The plugin system is
flexible, but does not depend on the key name. So it is not possible to use different plugins for different
applications and still have a global key database.

Debconf

DEBCONF is a set of Debian-tools[24] that separates user interaction from the configuration process for
the system’s configuration when packages are installed or upgraded. Debconf itself does not change
the configuration files. Instead, the administrator is asked questions depending on template files using
different front ends. These answers are then cached. The configuration changes themselves are applied
by post-install scripts of the particular package. Exactly for this last step Elektra could yield much better
results, because it can compare configuration on a per-key basis and thus handle conflicts in a much more
fine-grained way.

Freedesktop.org

The freedesktop.org initiative unifies different desktops using the X Window System in various
ways. The main focus, however, lies in KDE and Gnome integration. One of the most disturbing and still
unresolved problems is configuration. Elektra intends to fill this gap in the future.

Already available is the so-called XDG Base Directory Specification[5]. Perhaps it will define file
formats in the future, but currently only the paths are specified. To do so, it introduces some environment
variables that help to find the actual configuration. Only if they are unset or empty, a built-in fallback
should be used. If desired, elektrified applications behave in a XDG conforming way.

1.3.3 Key Databases

We give an unavoidably incomplete overview of the huge variety of existing configuration files and other
key databases.

Configuration Formats

Each of them has properties with debatable advantages and disadvantages. We concluded that none of
these formats can be considered best, but they have some differences in field of applications. Elektra,
however, makes it possible to implement each of these formats:

freedesktop.org

10 CHAPTER 1. INTRODUCTION

1. Many formats have been invented exactly for configuration. Parsers and generators are often avail-
able for them. Examples are INI and its dialects, xfree-, apache- and C-like configuration formats.

2. File formats invented for the exchange of information are often able to contain arbitrary hierarchi-
cal data – so they can also store configuration. Examples are XML, JSON and YAML[6]. But,
for example, XML is not perfectly suitable for editable configuration because it has some inconve-
nient ROUND-TRIPPING PROPERTIES[38]. But it is adequate for exchanging configuration between
systems.

Other Key Databases

It is currently unclear how well Elektra can support other types of key databases:

1. There are binary key databases developed for fast configuration access. When keys are stored, they
are compressed and indexed in a way that they can be retrieved efficiently. Their obvious drawback
is that the files are not humanly readable. libeet[20] is an example.

2. There are conventional databases that can be used when the applications already have data stored in
them. The disadvantage is that they are not humanly readable and often not deducible4 if something
has changed. It is, however, possible that the first access is already fast, opposed to other key
databases, where a cold startup can yield seriously slow results.

1.4 Goal of this Thesis

The goal of this thesis is to improve Elektra in a way so that developers, administrators and users can
profit from a better modularity that allows them to configure the features, capabilities and behaviour of
the configuration storage according to their needs.

Up to now, we have not considered these specific requirements. But each of Elektra’s users has
different considerations on how the configuration system should work:

• Elektra should support different configuration file formats.

• Elektra should support different ways to escape and encode the content of configuration files.

• Elektra should be able to log and notify other software on any configuration changes.

• Elektra should be able to avoid the problem that any invalid configuration is written into the per-
manent storage.

• Elektra should be able to provide different mechanisms to locate these configuration files.

• Elektra should be able to detect configuration updates and conflicts.

4On files it is possible with the syscall stat().

1.5. METHODOLOGY 11

Each of these items brings a new dimension to the overall problem because for each requirement a
variety of competing solutions exists. Some concrete solutions work only for a specific operating system
or even only for a specific application. The modular approach should be able to bring the wide range of
different considerations under one roof.

1.5 Methodology

The way to reach the goal of this thesis consists of the following steps. First we will analyse the previous
version of Elektra. We will show its problems and limitations in detail. Using this information we will
locate improvement opportunities. Next we will propose several ways how to circumvent these points.
We will consider and balance the different alternatives in a conscious way to find the best one. Then we
will implement the chosen solution. We will evaluate the code, the running system in different scenarios
and the new semantics of the key database. At that point, we will analyse the results and finally present
our conclusions.

In the following part of the section we will specify the tools we will use for Elektra and describe why
some tools will be replaced. After that we will finish this chapter by describing the benchmark methods.

1.5.1 Development Methods

We will employ an agile and test-driven development process. For this thesis we will conduct a bidi-

rectional approach. On the one hand, the design is developed bottom-up and first basic facilities are
implemented. On the other hand, it is also important to use a top-down approach to model the overall
framework and to ensure that the facilities work together smoothly.

1.5.2 Tools

Elektra consists of many parts and provides some tools by itself as explained in Section 1.2.3 on page 7.
All of them link against Elektra’s core library. The core provides the fundamental data structures and
functions to work with them. There is no other choice but to write this part in C because Elektra should
be available at early stages during the boot phase5 and for every software regardless of the language used.
To support access to the global key database from other programming languages, language bindings are
needed. It is possible to write bindings for nearly every other language if the library is written in C. Tools
like SWIG6 simplify this task.

A problem of C code is that the programmer needs to check for every function invocation if it has
returned a failure code. It is also the programmer’s challenge to clean up everything he or she allocated
and to check every return value. These checks lead to a long code. So we keep the C++ bindings up to
date. Because of exceptions and smart pointers, these disadvantages do not exist there. The executable
can be as fast and compact as when working with C Code. So some plugins will be written taking
advantage of C++.

5Specifically, under UNIX even /sbin/init can be elektrified.
6Simplified Wrapper and Interface Generator

12 CHAPTER 1. INTRODUCTION

For a library with modules as flexible as in Elektra, there are special requirements to the BUILD

TOOLS. Elektra originally used autoconf and automake which was unsatisfactory for a number of reasons.
First of all, there are no directory-based possibilities to check or depend on other libraries. But exactly
this is a central feature requirement for a modularised version of Elektra. The tool of choice will be
CMAKE which does not have these problems.

Building Elektra will consist of building some programs first. The purpose of these programs is
to generate code needed to build other parts of Elektra. One of these programs will produce C code
containing a list of the static modules. Another program will generate C code that maps error numbers
to other error-related information. CMake directly supports the building of programs that generate code
needed later.

Until recently, we used SVN as REVISION CONTROL SYSTEM. However, it has two major problems.
The first one is that the history of a branch is linear only. It is slow to make branches and difficult to
merge them, which does not meet the requirements for trying out new features in branches. The second
one is that only a central development model is supported, but a decentralised and flexible methodology
is needed. GIT will be the tool of choice for this method.

1.5.3 Benchmark Methods

For benchmarking, as in any other experiment, one aspect is crucial: reproducibility. It must be possible
for any other scientist to set up the very same experiment and try it again. Ideally it should always yield
equivalent results. This can be supported by providing the exact version of source code which was used
to run the test, the build options used, the input data given and all output data produced. But there are
some limits because someone else uses different hardware, other benchmarks tools, another file system
or maybe another operating system. So considerable effort is necessary to eliminate these factors. One
possibility is to give only comparative statements which are the same even if the absolute values differ.
Nearly every operating and file system caches access so that in future requests the same data can be served
faster7. The effects can be significant and should be considered in the benchmarks.

To make the benchmarks as reproducible as possible, all this information needs to be given for every
benchmark. The methodology we will use is to first bring the source code to exactly the state which
should be tested. This state will be committed with git. Then the input files and build options will be
created and the tests will be executed. The process will be completed by committing all this information
together with the results in a separate benchmark branch in git.

7A noteworthy exception is the file system tmpfs that is already completely in memory.

CHAPTER 2
Approach

2.1 Problem

Elektra 0.7, the version before the work on this thesis started, already fulfilled the basic principles needed
for sharing configuration and the other features as described in Chapter 1. This section describes what we
learned from this previous version.

2.1.1 File System Semantics

This section explains why using a file system for configuration storage is not a good idea.

filesys

FILESYS was the first backend. It implemented the principle that every key is represented by a single file.
The key name was actually mapped to a file name and the value and the comment was written to that file.

If the backend filesys was the ideal solution, Elektra’s API1 would be of limited use2 because
well-established APIs for accessing files are available in every applicable programming language.

Elektra 0.7 already supported more than one backend, but filesys was the only backend implement-
ing the full semantics.

Limitations of File Systems

One file per key turned out to be inefficient because of the file system’s practical limitations. In most file
systems, a file needs about four kilobytes3 of space, no matter how little content is in it. Thus the file

1 API is an abbreviation for application programming interface. APIs consist of functions and data structures that are imple-
mented by a software program.

2Cascading (see Section 1.2.3 on page 6), type checking and optional cross-cutting features would be missing. The storage
problem itself and the location of a key in a key database would be solved.

3Depends on the block size, four kilobytes is a common value often used as default.

13

14 CHAPTER 2. APPROACH

system wastes 99.9% of the space if keys have a payload of four bytes. We can argue, however, that we
can use a file system[36] which does not have this problem.

Many additional restrictions occur for portable access. The file name length in POSIX is limited to
fourteen characters. Additionally, issues with case sensitivity are likely. The common denominator for
all file systems is a surprisingly small one. If, for example, the traditional FAT file system should be
supported, file names are limited to eight characters and case insensitivity.

An even more severe problem arises: The file system’s semantics are not well suited for configuration
at all.

On the one hand, there are many file system features that are not needed for configuration. Many
security rules determine if it is possible to access a file or not. It has to be checked for every open()

system call on each level if the current user is allowed to access it. File systems have a strict hierarchy.
It is not possible to create a file in a non-existing directory. We will refer to such a missing object as
HOLE. File systems do not support such holes. Some operating systems define files with a special name
to be hidden. Such semantics are of limited use for a configuration system4. A single root directory

is not a useful concept for configuration. Instead, the system configuration and each user configuration
has its own root. These root keys themselves are typically not needed. The use of current directories

is a rather problematic topic, even in file systems. Because current directories are defined per process,
multithreaded applications using relative file names do not work well if the current working directory is
changed. openat() was introduced because of that issue. There is additional metadata of files which
is typically not needed for configuration: atime, mtime, ctime, uid, gid and mode just to name a few.
Additional file types5 are not needed either. Features like sparse files are ridiculous for the small strings,
that key values typically are.

On the other hand, there are many features missing in file systems that we need in a serious key
database. Creating a whole hierarchy of files at once atomically is not possible. Ways to achieve this
are currently academic[45] and not portable. Directories cannot have any content next to the files below.
Swap semantics are missing: it is not possible to rename a file without removing the target first. Locks are
not powerful enough either. It is not possible to lock hierarchies of files at once. To sum up, file systems
are not suitable to hold configuration with one entry per file. Instead, they are perfectly suitable to hold
larger pieces of information like configuration files.

Capabilities

Every backend, except filesys, was unable to represent full file system semantics. CAPABILITIES

described the differences between filesys and another backend6. Capabilities made it possible to im-
plement a backend different from the way filesys works and let the backend still have predictable
behaviour. The user could query a backend if it was capable of a specific detail of file system semantics.

4Elektra up to version 0.7 supported it anyway because of its tight integration to a file system.
5For example, device files, links, fifos and sockets.
6For POSIX file systems a similar technique is pathconf(). It allows the user to query the capabilities of a specific

mounted file system given by path.

2.1. PROBLEM 15

Capabilities were initially introduced to make backend development easier, because they also ex-
pressed the disabilities of a backend. For example, it was possible for a backend to claim that it is not
aware of comments.

Getting a single key works well for filesys. On the other hand, for configuration files the whole
content must be parsed even for a single key. Capabilities were able to describe that the backend will
always retrieve and store all keys and will not be able to retrieve and store individual keys. This restriction
simplified the implementation of such backends considerably. Capabilities allowed us to implement fstab,
passwd and hosts backends.

But we soon found the limits of capabilities. Capabilities were unable to describe:

• that some key names are not allowed.

• that not every structure of configuration is allowed.

• that some characters are not allowed.

• that only specific key values are allowed.

The semantics of the filesys backend7 were complex and bulky. The underlying storage contained
metadata like modification times and file modes. Other backends deactivated all these semantics by capa-
bilities. But the capabilities overburdened the API because of the comprehensive file system semantics.
The capabilities system became hard to understand, ambiguous, and far from being stable.

The main problem was that the complexity was just moved to the applications. In the end, application
developers had to understand what the backend can write out. They no longer had confidence that the
storage was able to understand the full semantics. Elektra’s core was unable to hide that fact. Capabilities
did not turn out to make backend development much easier. Instead, Elektra was more difficult to use
with capabilities. Capabilities are no longer part of Elektra for these reasons.

2.1.2 Missing Modularity

Sharing code between backends is known to be a critical task. In Elektra 0.7, contrary to what is expected,
code from a backend could not be reused. Missing reuse presents a major problem because backends have
many common aspects.

libhelper

LIBHELPER was an attempt to share code between backends. The idea was to write a library which helps
backends to fulfil common tasks and that other backends can profit from the code.

libhelper tried to collect common code together. The backend filesys had existing code to
escape characters, resolve file names from key names and more similar tasks. libhelper extracted this
code because other backends could also need this code.

7Up to version 0.7, the file system semantics were also Elektra’s semantics.

16 CHAPTER 2. APPROACH

While it was possible to separate libhelper from the core, it was risky because it was optional to
use it. Writers of backends would avoid using this additional library then. libhelper eventually became
part of Elektra’s core.

After some time, however, it became clear that it is hard to write such functions generally enough to
be useful for every backend. In the end, filesys was nearly the only candidate that actually profited
from libhelper.

Testing

The functions of libhelper were hardly testable because they often relied on environmental information
which were dependent on the operating system. Because they were in the core, they should be portable
and they need to react differently in various scenarios. The test cases have to take that into account.

The worst problem was that the functions were incapable of enforcing the backends to have specific
behaviour because the backend developer could always choose not to use these functions. For example,
the path resolution of the kdb utility was not always correct because of that fact. Elektra’s users want to
know where their configuration files are. This information was determined by calling the path resolution
of libhelper. If backends did not use the path resolution of libhelper, the user obtains wrong
information.

Functions of libhelper were not flexible enough because it was not possible to change their be-
haviour at run time for specific backends. Last, but not least, a potential backend developer had to learn
the complete libhelper API before he or she could begin to write a backend. The approach of using a
common library for all backends failed for these reasons.

2.1.3 Missing Features

The purpose of a backend is the access to configuration storage. But, additionally, it needs to cope with
many other features like encoding key values.

Dependences

These concerns typically need external dependences. libhelper was able to change the encoding of
strings and key names by using the external library ICONV8. Key values, names and comments that have
encodings distinct from UTF-8 were converted to UTF-8 first. So, in the storage of filesys all strings
were UTF-8 encoded. As practical as this idea is for some users, it is useless or even disturbing for others.

Elektra’s core in the version 0.7 directly communicates with one backend. This approach makes it
optional whether to implement advanced features in the core or in the backend. In order to be portable,
Elektra’s core must avoid dependences. In backends, dependences are acceptable if, and only if, they
support the specific task of this backend. The main task of a backend, however, is reading and writing
configuration and not converting between encodings.

8On some systems this functionality is actually integrated in libc.

2.2. NEW APPROACH 17

Build System

It has been impossible to turn features of backends on and off at run time. A partial solution of this
problem is the former complex build system in Elektra that allowed us to switch functionality on and off
at compile time. The more combinations of build system options are available the more likely unexpected
results occur in some rare cases. No information is available that would help us to understand how these
features interact.

Precompiled versions of Elektra either lack some features or have considerable space and time over-
head because of unnecessary features. The ultimate goal is that the administrator can choose at run time
if he or she wants to have a feature.

Development Time

Writing backends has shown to be a time-consuming task because of the many requirements exposed to
backends. The last part of this section connects the previous problems to the time effort needed by the
backend programmer.

Let us assume that a programmer receives a list of requirements the configuration system needs to
handle. That could be notification, logging and a specific configuration format. It is very unlikely that an
existing backend already fulfils these requirements.

Writing a completely new backend means the same effort as writing a new configuration library. As
a result, programmers will probably decide to build their own solutions. Elektra will only be considered
useful in situations where its benefit of providing a global key database is really needed.

2.2 New Approach

We have seen that implementing too many features in one backend is problematic. It introduces unwanted
external dependences and leads to less portable backends. Many different aspects clutter the code making
the backends unmaintainable. Features of other backends cannot be taken with ease because they are
interwoven with other code.

To support the reuse of a backend, they must be useful in different situations. Separation of concerns
is required for that. Each backend needs to have a specific purpose rather than implementing the full
semantics of Elektra.

It was impossible to implement powerful and feature-rich backends so far because of the lack of
modularity. Desirable features like notification and type checking have always been in the developers’
heads, but there was no place where it would fit in without making the system unmaintainable, complex
and full of unwanted external dependences.

To solve this dilemma, we propose that MULTIPLE PLUGINS together build up a backend. The key
set processed by one plugin will be passed to the next. This approach allows us to implement separate
features in separate plugins. Plugins concerned with reading and writing to permanent storage are called
STORAGE PLUGINS. We cleaned existing backends from other tasks so that their only job now is related to
the storage. Using this approach, the plugins provide the desired separation of concerns inside a backend.

18 CHAPTER 2. APPROACH

ApplicationApplication

LibelektraLibelektra

BackendBackend

ApplicationApplication

LibelektraLibelektra

Filter PluginFilter Plugin

......

Storage PluginStorage Plugin

n Plugins = 1 Backendn Plugins = 1 Backend

Figure 2.1: Introduction of Multiple Plugins

Each plugin implements a single concrete requirement and it does that well[30]. This architecture
allows plugins to have external dependence. Not every plugin has the burden to be portable anymore.
That is no problem because the plugins are separate subprojects and maintainers can decide if they should
be built for a specific platform or not. Afterwards users can choose which plugins they want to install and
use. And finally, the administrator can choose which of the plugins should be loaded for each backend.
If a specific feature is not needed, it is not included and does not cause additional overhead. Given the
chosen approach, the core of Elektra can stay minimal. In addition, even parts of the former core library9

can be moved to plugins.
Now let us look at the development time with multiple plugins. The programmer will find many

reusable plugins. Some of them already fulfil given requirements. While checking the code quality of the
plugins, the programmer actually learns how the plugin works. Given that point of view, the programmer
will decide to use Elektra because he or she can choose from a pool of existing plugins.

2.2.1 Metadata

Introduction

METADATA is data about data. Up to now, there has been a limited number of metadata entries suited
for filesys. For filesys this was efficient, but it was of limited use for every other backend. This
situation has now changed fundamentally by introducing arbitrary metadata.

In Elektra, METAKEYS represent metadata. They can be stored in a key database, often within the
representation of the Key. Metakey is a Key that is part of the data structure Key. It can be looked
up using a METANAME. Metanames are unique within a Key. Metakeys can also carry a value, called
METAVALUE. It is possible to iterate over all metakeys of a Key, but it is impossible for a metakey to hold
other metakeys recursively. The purpose of metakeys next to keys is to distinguish between configuration

9For example, the parts implemented by libhelper.

2.2. NEW APPROACH 19

KeyKey
MetaMeta
keykey

MetaMeta
keykey

● MetanameMetaname
● MetavalueMetavalue

● MetanameMetaname
● MetavalueMetavalue

● KeyKey
● ValueValue

Figure 2.2: Metakeys

and information about settings[9].

Rationale

Metadata has different purposes:

1. Traditionally Elektra used metadata to carry file system semantics. The backend filesys stores
file metadata10 into the Key objects. This solution, however, only makes sense when each file
shelters only one Key object.

2. The metaname binary shows if a Key object contains binary data. Otherwise it has a null-
terminated C string.

3. An application can set and get a flag in Key objects.

4. Comments and owner, together with the items above, were the only metadata possible before arbi-
trary metadata was introduced.

5. Further metadata can hold information on how to check and validate keys using types or regular
expressions. Additional constraints concerning the validity of values can be convenient. Maximum
length, forbidden characters and a specified range are examples of further constraints.

6. They can denote when the value has changed or can be informal comments about the content or the
character set being used.

7. They can express the information the user has about the key, for example, comments in different
languages. Language specific information can be supported by simply adding a unique language
code to the metaname.

10File metadata in POSIX is returned by stat() in a struct with the same name. It contains a file type (directory,
symbolic link,..) as well as other metadata like uid, gid, owner, mode, atime, mtime and ctime.

20 CHAPTER 2. APPROACH

8. They can represent information to be used by storage plugins. Information can be stored as syntac-
tic, semantic or additional information rather than text in the key database. This could be ordering
or version information.

9. They can be interpreted by plugins, which is the most important purpose of metadata. Nearly all
kinds of metadata mentioned above can belong to this category.

10. Metadata is used to pass error or warning information from plugins to the application11 as we
will see in Section 3.3.2 on page 48. The information is uniquely identified by numerical codes.
Metadata can also embed descriptive text specifying a reason for the error.

11. Applications can remember something about keys in metadata. Such metadata generalises the
application-defined flag.

12. A more advanced idea is to use metadata to generate forms in a programmatic way. While it is
certainly possible to store the necessary expressive metadata, it is plenty of work to define the
semantics needed to do that.

2.2.2 Contracts

Each plugin in a backend can cause run time errors. Additionally, the chaining of the plugins can introduce
further run time errors. For example, a plugin can modify keys so that the next plugin cannot process these
keys anymore. Or a plugin can omit changes to the keys that are required by the next plugin. To deal
with such situations in a controlled way, each plugin exports a contract that describes the interaction with
other parts of the backend. A KeySet contains the description.

Mounting of backends actually takes place at run time, we will refer to it as MOUNT TIME. The time
when applications access the key database, however, will be called RUN TIME.

The CONTRACT CHECKER revises contracts of plugins during the mount time. Afterwards, at run
time, no such type errors can occur. kdb mount implements the contract checker. It can refuse to add a
plugin to the backend because of a conflict or constraint. As long as not all contracts are satisfied kdb

mount waits for more plugins to be attached.
The contract contains well-defined CLAUSES, but has no hidden clauses[31]. Some of them are in-

troduced in the following text. The other clauses will be introduced later when it is appropriate. Use the
index at the end of this thesis to find all clauses.

infos/provides introduces names for an abstract action that is implemented by this plugin. A plugin
indicates that it is a provider for all activities necessary to fulfil a specific mission. The name
already provides users with an understanding what this assignment is. Together with an informal
text (infos/description) it exactly describes the responsibilities. Other plugins can utilise this
service. Some of these services will be presented in Chapter 4.

11The application can decide to present it to the user.

2.2. NEW APPROACH 21

infos/needs is the counterpart of provides. Using it, plugins delegate some work to other plugins. They
need a provider of a specific service to work properly. The clause describes that the plugin can only
fulfil its work if a specific service is present in the backend. It does not state when the work has to
be done. The clause only declares that such a provider must be present anywhere in the backend.
The name can also directly refer to another plugin’s name.

infos/version gives the number of the version of Elektra’s plugin interface the plugin is written for. The
version implies how the plugin interface must look. For the contracts described in this paper, it is
always ”1”.

infos/author blames the person responsible for the plugin. The plugin must behave as described in the
contract. This clause should contain an e-mail address so that direct contact is possible.

infos/licence contains the plugin licence. Note that even if the plugin’s code is BSD licenced12 and it
needs code, for example, under GPL13 to work, the contract needs to say ”GPL”. ”BSD” stands
for the simplified, three-clause BSD licence that is used by Elektra itself. For any plugin which
does not declare the licence to be ”BSD” currently, a warning will be displayed during the mount
process, because the overall licence of the installation concerned may change.

infos/description explains informally what the plugin does. It should be humanly readable and will not
be parsed or checked. The person reading it should get an idea if, and why, this plugin should be
used. This clause is important for reusability, but negligible for the contract’s validity.

exports provides function names as subkeys. A plugin can export symbols for external use. Users of the
library can look for these symbols and get a pointer to a function. Other plugins, however, are not
supposed to use these symbols.

exports/name is such a symbol. Name can be any valid C name. It contains a function pointer to enable
applications to call the function. Given the plugin and symbol’s name the function pointer can be
accessed by a unique locator in the global key database.

config/needs presents the plugin configuration needed so that the plugin works properly. Typically the
configuration is not for the plugin itself, but for other needed plugins (infos/needs).

Plugins are the only place to export contracts, but they are not the only party. It is also possible
that the administrator extends the requirements to every backend, for example, if notification is required.
This implies that every backend has to provide a specific additional service that will be checked using
contracts. Plugins are also involved in contracts with Elektra’s core. This topic will be discussed in
Section 3.4 on page 52 in which the algorithm used by Elektra’s core is explained.

12Berkeley Software Distribution
13GNU General Public License

22 CHAPTER 2. APPROACH

Assertions

Contracts as introduced by [31] define PRECONDITIONS and POSTCONDITIONS on routines. Assertions
handle these conditions by checking them before entering or after leaving a routine. Because most of this
can happen only at run time[25, 18, 31], it often leaves the user alone with an exception.

Elektra goes a step further. Instead of exiting the normal control flow when a precondition is not met,
it is the responsibility of a special plugin to handle the situation and make sure that the precondition is
met afterwards. Sometimes this is not possible. In these cases, the plugins check the necessary conditions
and return with error code when they are not met. As we will see, these situations do not occur very often.

Because of the modular approach, we can have several checkers, and correcting and checking can be
combined. Plugins can work together to reach a certain goal.

KeySet and Key already handle most parts of checking pre- and postconditions imposed on data
structures. Elektra’s core provides preconditions and weak postconditions for the plugins.

2.2.3 Consequences

We will discuss here the consequences of the new approach by comparing the previous situation in Elek-
tra 0.6 with multiple plugins, contracts and metadata adopted in Elektra 0.8mile4.

Elektra Semantics

The use of arbitrary metadata has extensive effects in Elektra’s semantics. They become simpler and
more suited to carry key value pairs. The semantics now gives us independence of the underlying file
system. So none of the file system’s restrictions apply anymore. No constraints on the length of a key
name disturbs the user any more. Additionally, key names can be arbitrarily deep nested14.

The directory concept does not exist anymore. Keys can be created everywhere. Keys can always
have a value. The only constraint is that they are unique and occur either in the user or system hierarchy.
Every Key has an absolute name. There is no concept of relative names in Elektra except for metadata
belonging to a key. Every Key is independent of each other. We just do not care if there is another key
below or above the accessed one in the storage or not.

Some applications need specific structure in the keys. Plugins can introduce and enforce relationships
between keys. They can implement a type system, check if holes are present and check the structure and
interrelations. They may propagate the metadata and introduce inheritance. We see that plugins are able
to add more semantics to Elektra.

There are no symbolic links, hard links, device files or anything else different from key value pairs.
Again, most of these behaviours can be mimicked using metadata.

Hidden keys are not useful for Elektra. Instead comments or other metadata contain information about
keys that is not considered to belong to the configuration. If hidden keys are desired, we can still write a
plugin to filter specific keys out.

14Depth is the number of / in the key name.

2.2. NEW APPROACH 23

Elektrifying Software

configconfig

App AApp A

globalglobal
configurationconfiguration

App AApp A App BApp B App CApp C

elektrifyelektrifyconfigconfig

App BApp B

configconfig

App CApp C

Figure 2.3: Elektrify Software, thanks to Avi Alkalay[1]

When a software starts to use Elektra, it is called to be elektrified. The first steps are basically the
same in the current version as in Elektra 0.7. The places where configuration is parsed or generated must
be located. Afterwards, Elektra’s data structures must be used instead at these locations. In Elektra 0.7,
that was nearly everything the software developer could do.

Now more optional possibilities are open. First, the parser and generator code can be moved to a
storage plugin without having to rewrite additional parts. Doing this, the syntax of the configuration file
stays exactly the same as it was before. The application immediately profits from Elektra’s infrastructure
solving basic issues like update and conflict detection and resolving of the file name.

Moreover, a huge variety of plugins can be utilised to extend the functionality of the configuration
system and the programmer can write supplementary plugins. They can do syntactic checks, write out
events in their log files and notify users if configuration has changed. So we get a bunch of plugins that
are reusable, and we gain a lot because every other program can also access the configuration of this
software.

For new software the situation is similar. Additionally, there is the option to reuse mature and well-
tested plugins to achieve the optimal result for configuration. New applications simply do not have the
burden to stay compatible with the configuration system they had to before. But they can also use self-
written plugins for adding needed behaviour or cross-cutting concerns.

To sum up, if a developer wants to elektrify software, he or she can do that without any need for
changes to the outside world regarding the format and semantics of the configuration. But in the inter-
connected world it is only a matter of time until other software also wants to access the configuration, and
with elektrified software it is possible for every application to do so.

24 CHAPTER 2. APPROACH

On Purging Applications

There are two ways of uninstalling software: REMOVING and PURGING. After removing, the software
can be reinstalled and it will work as before. If software is purged, its system configuration is also
gone. But user configuration of the application will stay. Elektra, however, allows users to purge their
configuration of applications, that are not installed, or if the user does not need the settings anymore. One
way to achieve this is based on a central repository containing a list of key names for every program. This
central repository only moves the problem to another place: What is responsible for removing entries
from there?

Another way to solve this problem is to tag keys with metadata to which software they belong. It still
needs a repository of installed software. But after the item in the repository has been purged, the user’s
configuration with the metadata referencing to nothing persists. Because the reference is gone one knows
that it belongs to software that is not installed at that moment.

Security Concerns

The tight integration of software also includes some risks. Software may locate more places where it
can plant hidden configuration – in the configuration of other software. We believe, however, that with
further developed techniques, as described in the subsection above15, and especially with revision-control
systems it is easy to detect such misusage.

Additionally, potentially sensitive information like proxy settings, preferred e-mail servers and similar
information may be abused by malicious software. This can easily be avoided because the file restrictions
of the configuration files still apply and cannot be circumvented with Elektra. Untrusted software must
be executed by another user without permission on the sensitive files.

On the other hand, security can even be improved with Elektra. For example, Elektra makes it pos-
sible to split configuration in parts of fine granularity. Each of these configuration files can be restricted
separately. In Elektra 0.7 filesys illustrates an extreme variant of what is possible. Because every key
was in its own file it even allowed users to change their passwords without giving passwd16 extended
privileges by giving specific users write-only-access to their key storing the password.

Universal Plugins

When the backend architecture was introduced nearly all code was simply moved to a backend. Elektra’s
core was only a delegator. It mainly consisted of some trivial loops in the case that the plugin supported
only one Key and not a whole KeySet.

Only one plugin dedicated to be externally called was present then: libelektratools. It was used
to import and export configuration from and to XML. But it could not be used as a backend because of
its incompatible API although an XML backend was a common request.

15Using cryptography so that it cannot be faked.
16The program that changes passwords in UNIX.

2.3. CHOICES 25

This situation changed with the introduction of contracts. Now UNIVERSAL PLUGINS can export
function pointers using the clause export as described in Section 2.2.2 on page 21. Plugins can provide,
next to their actual task, functions for applications.

The main purpose is explained by the import and export feature that can now be provided by every
storage plugin. One only needs to import a KeySet using one plugin and export it using another plugin.
Some filters in between also become handy. So libelektratools is superseded by this new way to
access functionality of regular plugins. To sum up, plugins are now universal to applications because they
can export arbitrary functions.

2.3 Choices

We established the basic approach and looked at its direct consequences. Some consequences, however,
yield problems. In this section we look at some problems, give some ideas how to address them and
decide how we will solve them. Additionally, we will give a rationale for the decision where appropriate.

2.3.1 Storage Plugins

The storage plugin needs a significant part of the development time compared with other plugins of a
backend. Many approaches exist to reduce the needed effort significantly:

Grammar: Writing the parser by hand may lead to faster parsing times in some cases. But the resulting
code is often hard to maintain. Various ways exist to create storage plugins using grammars as the
next two paragraphs describe.

Lex (Flex) and Yacc (Bison) are powerful tools which make it easy to parse even complex files and
fill up data structures during the process. They are not intended to generate configuration files.

The C++ boost libraries contribute with spirit::qi and spirit::karma a full solution to parse
and even generate files using a grammar. They are implemented with C++ templates forming a
domain-specific language.

Configuration Libraries: Another idea is to reuse libraries that contain already written parsers or gen-
erators.

Copy Existing Plugins: Some programmers prefer to start from a similar plugin when they intend to
implement another one. Large plugins with many features are not suitable to do so. Instead, they
rather confuse programmers and show that writing such a plugin is a really hard job. Storage
plugins of the new generation do nothing else than deal with storage and are good candidates as
starting points.

Reuse: The most important aspect is that sometimes a plugin needs a feature exactly as it is implemented
in another plugin. Filter plugins often help in these situations. The support of reuse of plugins can
improve development time significantly.

26 CHAPTER 2. APPROACH

We decided to implement and compare some of these variants because it is not clear which ones will
yield the best results in term of development time, features and robustness without concrete data. The
results are given in Section 5.1 on page 83.

2.3.2 Resolver Plugins

With the introduction of multiple plugins, we have the possibility to write portable, as well as, operating
system specific plugins interacting within the same backend. While many plugins are designed to be
portable, the so-called resolver plugin is not.

The plugin takes over the responsibility for resolving the configuration’s file name depending on the
key name17, the environment and other operating system specific properties. In addition, it overwrites this
file in an atomic way. Finally, it guarantees that the configuration is only updated if needed. In UNIX,
these operations use the same operating system facilities and need to remember the same information.

The resolver compares the timestamp or revision of the file with the one it had in the previous attempt.
On reading configuration, a newer key database just means that an update is needed. But on writing

configuration, a more recent key database means that a conflict has occurred.
The resolver can lock and rename files to accomplish an overall atomic property of kdbSet(). The

resolver must always get a chance to undo its actions. If an error has occurred, the resolver has to do a
rollback. Otherwise it can commit the changes.

Reverse Resolving

We already learned that it is the job of the resolver to find the appropriate file name. While many ap-
proaches exist to solve this problem, each of them is simple. The reverse question, however, is more
difficult. We want to know which key names a specific configuration files holds. An approach to answer
the question is to enrich every Key with the filename as metadata. The resolver could be asked to do
that. Then it would be possible to search for keys within a given configuration file. But that would be an
expensive operation because the whole configuration tree needs to be traversed.

Rationale

The idea of extracting the operating system-dependent parts from the storage plugins opens many pos-
sibilities. The most important one is to add the support of another operating system by writing a new
resolver plugin. Moreover, different strategies can be used on a single operating system depending on the
user’s requirements. This approach allows the resolving to behave differently to fit the user’s needs even
better.

17If the key starts with system the path is usually known at compile time, but if the key starts with user the path is usually
the home directory of the current user.

2.3. CHOICES 27

2.3.3 Cross-Cutting Concerns

This section describes cross-cutting concerns of applications that plugins can solve. Because they con-
centrate on a sole purpose, specialised plugins are possible.

Notification

Today, programs are often interconnected in a dense way. Such applications should always be informed
when something in their environment changes. For user interactive software, notification about configu-
ration changes is expected. The only alternative is polling, which wastes resources. It additionally is no
option, because for interactive software the latency needs to be low. Instead, the software which changes
the configuration has to notify all other interested applications that can reread their configuration with-
out significant delay. In Elektra, a notification plugin ensures that a notification is actually sent on each
change.

Applications can wait for such a notification with hand-written code. Bindings, however, allow for
better integration. It is a common approach for toolkits to provide a main loop. Applications using such
toolkits can integrate notification services into this main loop.

The actions that occur in such events are application or toolkit specific because of the non-invasive
nature of Elektra. Software reacts in many different ways to update events. Hence, the frequency of
update events should be kept at a minimum. Changes are kept atomic with a single attempt to write out
configuration. Notification callbacks shall not change configuration because this can lead to a longer
chain of unwanted modifications. That might not be true, however, if a programmer of the whole system
knows that a chain of reactions will terminate. When doing such event-driven programming, care is
needed to avoid infinite loops. Elektra guarantees consistency of the key database even in such cases.

The preferred way to interconnect desktop applications and even embedded system applications on
mobile devices running Linux is D-BUS[27]. The idea of D-Bus accords to that of Elektra: to provide
standards to let software work together more tightly. D-Bus provides a simple and lightweight IPC18

system to be used within desktop systems. Next to RPC19, which is of no interest in this work, it supports
signals which can notify an arbitrary number of other applications about changes. Given software like a
D-Bus library, notification itself is a rather easy task, but it involves additional library dependences. So it
is the perfect task to be implemented as a plugin. The information about the channels to be used can be
stored in the global key database.

D-Bus supports a system-wide bus and a session bus. The system configuration can be accessed by
each user and the user configuration is limited to a single user. Both buses can immediately be used for
the system and user configuration notification updates to get pleasing results. But, there is a problem with
the session bus: It is possible within D-Bus that a user starts several sessions. The user configuration
should be global to the user and is not aware of these sessions. So if several sessions are started, some of
the user’s processes will miss notification updates.

18Inter-Process Communication
19Remote Procedure Call

28 CHAPTER 2. APPROACH

Other OS or platforms provide other communication channels. Additional plugins are needed to
support them.

Forensic Logging

Up to now, we have only discussed problems of configurations on a single system. Even though Elektra
provides a global key database on a stand-alone computer, some plugins can help regarding computer
network issues.

Elektra can provide forensic logging through a plugin. It can enable full information about[19]:

• which keys are affected

• what exactly was changed

• who caused the change

• on which computer in sync with its environment the change was initiated

• exact local timestamp in milliseconds together with time zone information

• the process doing so

To ensure that the log is not faked it should be written on a remote computer and be secured there.

Security Policies

Elektra can provide powerful tools to enforce a security policy by mounting backends into the user’s key
databases. Only the administrator controls the mounting of backends. The user is not able to change that
mount configuration.

A common requirement is to enforce a specific proxy in a company. Bypassing the proxy poses a
severe security concern for that company. The administrator can force the use of a proxy by mounting a
special plugin which rejects proxies not allowed to be used according to company rules. If the user has
no choice at all, a plugin that returns an unchangeable key set can be mounted. These possibilities give
the administrator full control over the configuration.

KIOSK MODE usually denotes a group of actions with the purpose of reducing software functionality
in order to deploy it safely on interactive kiosk systems. Most of the desired effects can be achieved by
forcing the configuration to have specific values and do not give the user any chance to change them. The
goal is that the administrator can do that on an option basis. An administrator using kiosk mode wants to
have full control over values allowed to occur in settings.

Elektra can help achieve that in several ways. First, it is possible than an application loads system
configuration only. But this restriction needs severe modifications to the software because configuration
remains a cross-cutting concern. So this is only an option if it is the usual case to ignore user configuration
as for user credentials databases.

2.3. CHOICES 29

A special kiosk plugin can solve the problem much better. It is mounted for user configuration only,
and changes the values as requested by the administrator. It also sets a meta flag so that it is known that
this key is forced because of the kiosk mode. If the application is kiosk aware, it could deactivate the
options in the settings dialogue. Even if the setting is changed, the plugin will always return the same
value for a specific user as defined by the administrator. To disable the user hierarchy or parts of it, the
administrator can mount a plugin returning no configuration.

2.3.4 Ordering

Multiple plugins open up many ways in which they can be arranged in a backend. A simple way is to
have one array with pointers to plugins as shown in Figure 2.4. To store a KeySet, the first plugin starts
off with the KeySet passed to it. The resulting KeySet is given to the next plugin. This is repeated for
every plugin in the array.

To obtain a KeySet, the array of plugins is processed the other way round. An empty KeySet is
passed to the last plugin. The resulting KeySet is handed over to the previous one until the first plugin is
executed.

......

Filter PluginFilter Plugin

......

Storage PluginStorage Plugin

Figure 2.4: Ordering using Stacking

This approach has shown not to be powerful enough to express all use cases by counter-evidence.
Logging should take place after the storage plugin performs its actions in both directions. It is not possible
to do this with a single array processed in a way as described above.

Separated Lists

Two individual lists of plugins solve the problem as shown in Figure 2.5. Instead of bidirectional pro-
cessing of a single list two separate arrays are needed. It turns out that error scenarios also make this
approach unsuccessful. When a plugin fails, no other plugin must be executed later on because it might
depend on the previous plugin to work correctly. In kdbGet(), this works well – the update process will
be stopped. But during kdbSet(), changes to the file system must be reverted. Plugins can leave a lock,
temporary file or journal. These resources need to be cleaned up properly.

30 CHAPTER 2. APPROACH

NotificationNotification

Filter PluginFilter Plugin Filter PluginFilter Plugin

......

Storage PluginStorage Plugin NotificationNotification

......

Storage PluginStorage Plugin

Figure 2.5: Ordering using Separated Lists

Error List

So every backend additionally needs a third array that is executed in error scenarios during kdbSet().
Figure 2.6 shows the situation. Plugins responsible for the cleanup, rollback or error notification are
inserted into it.

LockLock

NotificationNotification

Storage PluginStorage Plugin

RollbackRollback

Error Notif.Error Notif.

UnlockUnlock

Figure 2.6: Ordering with Error List

The resolver plugin requires this error list to do a proper rollback. Another use case is logging after a
failure has happened.

Contracts

The ordering of plugins inside these three arrays is controlled by contracts. Each of the three arrays has
ten slots. These slots have names to be referred to in the contract. Table 2.1 contains all names.

The following clauses determine the placement:

infos/placement gives a list of places in which the plugin must appear. The places are referred to with
the names given in Table 2.1. During mounting, the algorithm checks if a free slot is available in
the requested position. Because of this clause the placement works automatically.

2.3. CHOICES 31

Table 2.1: Placement of Plugins

error get set
0 prerollback getresolver setresolver
1 prerollback pregetstorage presetstorage
2 prerollback pregetstorage presetstorage
3 prerollback pregetstorage presetstorage
4 prerollback pregetstorage presetstorage
5 rollback getstorage setstorage
6 postrollback postgetstorage precommit
7 postrollback postgetstorage commit
8 postrollback postgetstorage postcommit
9 postrollback postgetstorage postcommit

infos/ordering requests that a list of plugins or provided names is not present at the time of insertion. If
such a plugin is already there, the order constraint is violated. Note, that the relation to the storage
and resolver plugins is already determined using the clause placement.

infos/stacking disables the stacking of plugins. By default, plugins in postgetstorage are ordered
in reverse order than in presetstorage. This is called stacking. The stacking reintroduces the
feature which would automatically be available when only one array of plugins is processed bidi-
rectionally as shown in Figure 2.4.

CHAPTER 3
Implementation

3.1 Architecture

In this chapter we will explain the implementation of the modular approach. We discuss problems and
the solution space so that the reader can understand the rationale of how problems were solved.

To help readers to understand the algorithm that glues together the plugins, we first describe some
details of the data structures. Full knowledge of the algorithm is not presumed to be able to develop
plugins.

3.1.1 API

The aim of the Elektra Project is to design and implement a powerful API for configuration. When the
project started, we assumed that this goal was easy to achieve, but dealing with the semantics turned
out to be a difficult problem. For the implementation, an ambitious solution is required because of the
necessary modularity to implement flexible backends as introduced in this thesis. But also the design of
a good API has proved to be much more difficult than expected.

Changes in the API

For this thesis from Elektra 0.7 to Elektra 0.8mile4, we changed the API of Elektra as little as possible.
It should be mentioned that KeySet is now always sorted by name. The function ksSort() is now
depreciated and was removed. The handling of removed keys was modified. Additionally, the API for
metadata has fundamentally changed, but the old interface still works. These changes will be described
in Section 3.2.2 on page 41. On the other hand, the implementation of Elektra changed radically as
discussed in Section 3.4 on page 52.

33

34 CHAPTER 3. IMPLEMENTATION

API Design

API Design presents a critical craft every programmer should be aware of [7, 44]. We will shortly present
some of the main design issues that matter and show how Elektra has solved them.

A design goal is to detect errors early. As easy as it sounds, as difficult it is to actually achieve this
goal. Elektra tries to avoid the problem by checking data being inserted into Key and KeySet. Elektra
catches many errors like invalid key names soon. As we will see in Section 4.4 on page 77, Elektra allows
plugins to check the configuration before it is written into the key database so that problematic values are
never stored.

”Hard to use it wrong” tends to be a more important design objective than ”Easy to use it right”.
Searching for a stupid bug costs more time than falling into some standard traps which are explained in
documentation. In Elektra, the data structures are robust and some efforts were taken to make misuse
unlikely.

Another fundamental principle is that the API must hide implementation details and should not be
optimised towards speed. In Elektra, the actual process of making configuration permanent is completely
hidden.

”Off-by-one confusion” is a topic of its own. The best is to stick to the conventions the programming
language gives. For returning sizes of strings, it must be clear whether a terminating ’\0’ is included or
not. All such decisions must be consistent. In Elektra the terminating null is always included in the size.

The interface must be as small as possible to tackle problems addressed by the library. Internal and
external APIs must be separated. Internal APIs in libraries shall be declared as static to prevent its
export. In Elektra, internal names start with elektra opposed to the external names starting with key,
ks or kdb.

Elektra always passes user context pointers, but never passes or receives a full data structure by
value. It is impossible to be ABI1 compatible otherwise. Elektra is restrictive in what it returns (strong
postconditions), but as liberal as possible for what comes in (preconditions are avoided where possible).
In Elektra even null pointers are accepted for any argument.

”Free everything you allocate” is a difficult topic in some cases. If Elektra cannot free space or other
resources after every call, it provides a close() function. Everything will be freed2 when deleting all
created Key and KeySet objects and closing the KDB handle.

We always provide a default branch in the unlikely case – it might become possible some day. As a
final statement, we note that the UNIX philosophy[30] should always be considered: ”Do only one thing,
but do it in the best way. Write it that way that programs work together well.”

1We will read more about ABI in Section 3.2.1 on page 41.
2The tool Valgrind with Memcheck helps us locate problems. The whole test suite runs without any memory problems.

3.1. ARCHITECTURE 35

3.1.2 Concepts

Default Backend

One important aspect of a configuration library is the out-of-the-box experience. How does the system
work before anything is configured? The optimal situation is that everything works fully, and applications,
that just want to load and store configuration, do not see any difference in a well-configured, fine-tuned
system.

To support that experience, a so-called DEFAULT BACKEND is responsible in the case that nothing
was configured so far. It must have a storage that is able to store full Elektra semantics including every
type and arbitrary metadata. To avoid reimplementation of storage plugins, for default storage plugins a
resolver plugin additionally takes care of the inevitable portability issues.

The default backend is guaranteed to stay mounted at system/elektra where the configuration for
Elektra itself is stored. After mounting all backends, Elektra checks if system/elektra still resides at
the default backend. If not, it will be mounted there.

To summarise, this approach delivers a good out-of-the-box experience capable of storing config-
uration. For special use cases, applications and administrators can mount specific backends anywhere
except at, and below, system/elektra. On kdbOpen(), the system BOOTSTRAPS itself starting with
the default backend.

The default backend consists of a default storage plugin and default resolver plugin. The default
resolver has no specific requirements, but the default storage plugin must be able to handle full Elektra
semantics. The backend is not mounted anywhere in particular, so any keys can be stored in it. The
implementation of the core guarantees that user and system keys always stay separated.

Granularity

Keys of a backend can only be retrieved as a full key set. Currently it is not possible to fetch a part of
the keys of a backend. So the user needs to cut out the interesting keys with ksCut() afterwards. If the
keys should be committed again, the whole key set must be preserved. Otherwise, the clipped keys will
be removed permanently.

This restriction simplifies storage plugins while it does not limit the user. Other plugins would not be
able to fulfil their purpose without the full KeySet. For example, a plugin that checks the availability and
structure of all keys cannot work with a partial key set.

It is problematic to have too many keys in one backend. The applications would need memory for
unnecessary configuration data. Instead we recommend introducing several mount points to split up the
keys into different backends. Splitting up key sets makes sense if any application requests only a part of
the configuration. No benefits arise if every application requests all keys anyway.

Let us assume that many keys reside in user/sw and an application only needs the keys in user/

sw/app. To save memory and get better startup times for the application, a new backend can be mounted
at user/sw/app. On the other hand, every mounted backend causes a small run time overhead in the
overall configuration system.

36 CHAPTER 3. IMPLEMENTATION

The solution in Elektra is flexible, because the user decides the granularity. It is possible to mount a
backend on every single key, so that every key can be requested for itself. If no backends are mounted,
all keys reside in the default backend.

To sum up, Elektra’s core searches for the nearest mount point and gets the configuration from there.
It is possible that the user gets more configuration than requested. The user can decide by means of
mounting how much configuration on specific requests are returned.

Sync Flag

Elektra keeps track of changes the user makes on data structures. Because the KeySet can be composed
in the way the user wants it, the KeySet does not give enough information if changes occurred within.
Instead, changes will be marked in individual Key objects. On modifying functions, the so-called SYNC

FLAG will be set.

3.1.3 Modules

Elektra’s core can be compiled with a C compiler conforming to the ISO/IEC 9899:1999 standard3, called
C99 in the following text. Functions not conforming to C99 are considered to be not portable enough
for Elektra and are separated into plugins. But there is one notable exception: it must be the core’s
task to load plugins. Unfortunately, C99 does not know anything about modules. POSIX4 provides
dlopen(), but other operating systems have dissimilar APIs for that purpose. They sometimes behave
differently, use other names for the libraries and have incompatible error reporting systems. Because of
these requirements Elektra provides a small internal API to load such modules independently from the
operating system. This API also hides the fact that modules must be loaded dynamically if they are not
available statically.

Plugins are usually realised with modules. Modules and libraries are technically the same in most
systems5. After the module is loaded, the special function PLUGIN FACTORY is searched for. This
function returns a new plugin. With the plugin factory the actual plugins are created.

Static loading

For the static loading of modules, the modules must be built-in. With dlopen(const char* file)

POSIX provides a solution to look up such symbols by passing a null pointer for the parameter file.
Non-POSIX operating systems may not support this kind of static loading. Therefore, Elektra provides
a C99 conforming solution for that problem: a data structure stores the pointers to the plugin factory
of every plugin. The build system generates the source file of this data structure because it depends on
built-in plugins as shown in Figure 3.1.

3One line comments, inline functions, snprintf(), inttypes.h and variable declaration at any place are used in
addition to what is already defined in the standard ISO/IEC 9899:1990.

4Portable Operating System Interface
5One exception is Mac OS X.

3.1. ARCHITECTURE 37

Plugin Trie

KDB

+ kdbSet()
+ kdbGet()
+ kdbOpen()
+ kdbClose()

1

ModuleCache

Split

libloader

Modules

+ elektraModulesInit()
+ elektraModulesLoad()
+ elektraModulesClose()

0..*
2..*

1..n

insert

1

1
load

Backend

Diagramm: Klassendiagramm Seite 1
Figure 3.1: Architecture

Elektra distinguishes internally between modules and plugins. Several plugins can be created out of
a single module. During the creation process of the plugin, dynamic information – like the configuration
or the data handle – is added.

API

The API of LIBLOADER consists of the following functions:

Listing 3.1: Interface of Module System

int elektraModulesInit (KeySet *modules, Key *error);

elektraPluginFactory elektraModulesLoad (KeySet *modules,

const char *name, Key *error);

int elektraModulesClose (KeySet *modules, Key *error);

elektraModulesInit() initialises the module cache and calls necessary operating system facilities
if needed. elektraModulesLoad() does the main work by either returning a pointer to the plugin
factory from cache or loading it from the operating system. The plugin factory creates plugins that do not
have references to the module anymore. elektraModulesClose() cleans up the cache and finalises all
connections with the operating system.

Not every plugin is loaded by libloader. For example, the version plugin, which exports version
information, is implemented internally.

38 CHAPTER 3. IMPLEMENTATION

3.1.4 Mount Point Configuration

kdb mount creates a MOUNT POINT CONFIGURATION as shown in Listing 3.2. fstab is a unique name
within the mount point configuration provided by the administrator.

Listing 3.2: Example for a mount point configuration
system/elektra/mountpoints

system/elektra/mountpoints/fstab

system/elektra/mountpoints/fstab/config

system/elektra/mountpoints/fstab/config/path=fstab

system/elektra/mountpoints/fstab/config/struct=list FStab

system/elektra/mountpoints/fstab/config/struct/FStab

system/elektra/mountpoints/fstab/config/struct/FStab/device

system/elektra/mountpoints/fstab/config/struct/FStab/dumpfreq

system/elektra/mountpoints/fstab/config/struct/FStab/mpoint

system/elektra/mountpoints/fstab/config/struct/FStab/options

system/elektra/mountpoints/fstab/config/struct/FStab/passno

system/elektra/mountpoints/fstab/config/struct/FStab/type

system/elektra/mountpoints/fstab/errorplugins

system/elektra/mountpoints/fstab/errorplugins/#5#resolver#resolver#

system/elektra/mountpoints/fstab/getplugins

system/elektra/mountpoints/fstab/getplugins/#0#resolver

system/elektra/mountpoints/fstab/getplugins/#5#fstab#fstab#

system/elektra/mountpoints/fstab/mountpoint /fstab

system/elektra/mountpoints/fstab/setplugins

system/elektra/mountpoints/fstab/setplugins/#0#resolver

system/elektra/mountpoints/fstab/setplugins/#1#struct#struct#

system/elektra/mountpoints/fstab/setplugins/#2#type#type#

system/elektra/mountpoints/fstab/setplugins/#3#path#path#

system/elektra/mountpoints/fstab/setplugins/#3#path#path#/config

system/elektra/mountpoints/fstab/setplugins/#3#path#path#/config/path/allow=proc tmpfs none

system/elektra/mountpoints/fstab/setplugins/#5#fstab

system/elektra/mountpoints/fstab/setplugins/#7#resolver

Let us look at the subkeys below the key system/elektra/mountpoints/fstab:

config Everything below config is the system’s configuration of the backend. Every plugin within the
backend will find this configuration directly below system/ in its PLUGIN CONFIGURATION. For
example,

system/elektra/mountpoints/fstab/config/struct/FStab/mpoint

will be translated to

system/struct/FStab/mpoint

and inserted into the plugin configuration for all plugins in the fstab backend.

It is the place where configuration can be provided for every plugin of a backend. The contract
checker deduces this configuration to satisfy the contract for a plugin. Fstab, for example, claims
in a contract that it needs ”struct”. But the struct plugin needs a configuration to work properly.
Fstab will provide this configuration. The contract checker writes out the configuration looking
like the one in this example.

3.1. ARCHITECTURE 39

config/path is a common setting needed by the resolver plugin. It is the relative path to a filename that
is used by this backend. On UNIX systems, the resolver would determine the name /etc/fstab
for system configuration.

mountpoint is a key that represents the mount point. Its value is the location where the backend is
mounted. If a mount point has an entry for both the user and the system hierarchy, it is called
CASCADING MOUNT POINT. A cascading mount point differs from two separate mount points
because internally only one backend is created. In the example, the mount point /fstab means
that the backend handles both user/fstab and system/fstab. If the mount point is /, the
backend will be mounted at both user and system.

errorplugins presents a list of all plugins to be executed in the error case of kdbSet() which will be
explained in Section 3.3.3 on page 52.

getplugins is a list of all plugins used when reading the configuration from the key database. They are
executed in kdbGet().

setplugins contains a list of all plugins used when storing configuration. They are executed in kdbSet().

Each of the plugins inside the three lists may have the subkey config. The configuration below this
subkey provides plugin specific configuration. This configuration appears in the user’s configuration of
the plugin. Configuration is renamed properly. For example, the key
system/elektra/mountpoints/fstab/setplugins/#3#path#path#/config/path/allow

is transformed to
user/path/allow

and appears in the plugin configuration of the path plugin inside the fstab backend.

Referencing

The same plugin often must occur in more than one place within a backend. The most common use case
is a plugin that has to be executed for both kdbGet() and kdbSet(). It must be the same plugin if it
preserves state between the executions.

Other plugins additionally have to handle error or success situations. One example of exceptional
intensive use is the resolver plugin. It is executed twice in kdbSet(). In kdbGet() it is also used as
shown in Listing 3.2.

#n<name> introduces a new plugin from the module name which cannot be referenced later. The
cypher n appoints the actual placement of the plugin. #n#<name>#<label># also introduces a new
plugin from the module name and gives it the name label. The last # shows that a new name is being
introduced. #n#<ref> references back to a label which was introduced before. This configuration does
not create a new plugin. kdb mount already implements the generation of these names as described
above.

40 CHAPTER 3. IMPLEMENTATION

Changing Mount Point Configuration

When the user changes the mount point configuration, without countermeasures, applications already
started will continue to run with the old configuration. This could lead to a problem if backends in use are
changed or removed. It is necessary to restart all such programs. Notification is the best way to deal with
the situation. Changes of the mount point configuration, however, do not occur often. For some systems,
the manual restart may also be appropriate.

In this situation, applications can receive warning or error information if the configuration files are
moved or removed. The most adverse situation occurs if the sequence of locking multiple files produces
a dead lock. Under normal circumstances, the sequence of locking the files is deterministic, so either
all locks can be requested or another program will be served first. But several programs with different
mount point configurations running at the same time can cause a disaster. The problem gets even worse,
because kdb mount is unable to detect such situations. Every specific mount point configuration for
itself is trouble-free.

But still a dead lock can arise when multiple programs run with different mount point configurations.
Suppose we have a program A which uses the backends B1 and B2 that requests locks for the files F1 and
F2. Then the mount point configuration is changed. The user removes B1 and introduces B3. B3 is in a
different path mounted after B2, but also accesses the same file F1. The program B starts after the mount
point configuration is changed. So it uses the backends B2 and B3. If the scheduler decides that first A and
then B both successfully lock the files F1 and F2, a dead lock situation happens because in the afterwards
the applications A and B try to lock F2 and F1.

A manual solution for this problem is to enable kdb to output a list of processes that still use old
mount point configuration. The administrator can restart these processes. The preferred solution is to use
notification for mount point configuration changes or simply to use a lock-free resolver.

3.2 Data Structures

3.2.1 Introduction

Data structures define the common layer in Elektra. They are used to transfer configuration between
Elektra and applications, but also between plugins.

ADT

Both the KeySet and the interface to metadata within a Key are actually abstract data types, also known
as ADT. The API is designed so that different implementations of the data structures can be used inter-
nally. More information on this topic is given in [35, 39].

A HASH presents a good candidate as alternative data structure, especially for the metadata interface.
It is believed to be much faster on lookup, but considerably slower on sorted enumeration.

AVL TREES also serve as a competitor. AVL trees are expected to be faster for inserting keys at
any place, but may be slower for appending because of the needed reorganisations. Their disadvantage

3.2. DATA STRUCTURES 41

is that they need to allocate a large number of small pieces of memory. Further investigations, namely
implementation and benchmarks, are required to decide.

Currently the KeySet is implemented as a sorted array[35]. It is fast on appending and iterating, and
has nearly no size-overhead.

ABI compatibility

Application binary interface, or ABI, is the interface to all data structures of an application or library
directly allocated or accessed by the user.

Special care has been taken in Elektra to support all changes within the data structures without any
ABI changes. ABI changes would entail the recompilation of applications and plugins using Elektra. The
functions keyNew(), ksNew() and kdbOpen() allocate the data structures for the applications. The user
only gets pointers to them. It is not possible for the user to allocate or access these data structures directly
when only using the public header file <kdb.h>. The functions keyDel(), ksDel() and kdbClose()

free the resources after use. Using the C++ binding deallocation is done automatically.

3.2.2 Metadata

In this section, we discuss the implementation of metadata. Metakey is implemented directly in a Key as
shown in Figure 2.2. Every metakey belongs to a key inseparable. Unlike normal key names there is no
absolute path for it in the hierarchy, but a relative one only valid within the key.

The advantage of embedding metadata into a key is that functions can operate on a key’s metadata if
a key is passed as a parameter. Because of this, keyNew() directly supports adding metadata. A key with
metadata is self-contained. When the key is passed to a function, the metadata is always passed with it.
Because of the tight integration into a Key, the metadata does not disturb the user.

A disadvantage of this approach is that storage plugins are more likely to ignore metadata because
metakeys are distinct from keys and have to be handled separately. It is not possible to iterate over all
keys and their metadata in a single loop. Instead only a nested loop provides full iteration over all keys
and metakeys.

The metakey itself is also represented by a Key. So the data structure Key is nested directly into a
Key. The reason for this is to make the concept easier for the user who already knows how to work with
a Key. But even new users need to learn only one interface. During iteration the metakeys, represented
through a Key object, contain both the metaname and the metavalue. The metaname is shorter than a key
name because the name is unique only in the Key and not for the whole global configuration.

The implementation adds no significant memory overhead per Key if no metadata is used. For em-
bedded systems it is useful to have keys without metadata. Special plugins can help for systems that have
very limited memory capacity. Also for systems with enough memory we should consider that adding
the first metadata to a key has some additional overhead. In the current implementation a new KeySet is
allocated in this situation.

42 CHAPTER 3. IMPLEMENTATION

Interface

The interface to access metadata consists of the following functions:

Listing 3.3: Interface of metadata

const Key *keyGetMeta(const Key *key, const char* metaName);

ssize_t keySetMeta(Key *key, const char* metaName,

const char *newMetaString);

Inside a Key, metadata with a given metaname and a metavalue can be set using keySetMeta() and
retrieved using keyGetMeta(). Iteration over metadata is possible with:

Listing 3.4: Interface for iterating metadata

int keyRewindMeta(Key *key);

const Key *keyNextMeta(Key *key);

const Key *keyCurrentMeta(const Key *key);

Rewinding and forwarding to the next key works as for the KeySet. Programmers used to Elektra
will immediately be familiar with the interface. Tiny wrapper functions still support the old metadata
interface.

Sharing of Metakey

Usually substantial amounts of metadata are shared between keys. For example, many keys have the type
int. To avoid the problem that every key with this metadata occupies additional space, keyCopyMeta()
was invented. It copies metadata from one key to another. Only one metakey resides in memory as long
as the metadata is not changed with keySetMeta(). To copy metadata, the following functions can be
used:

Listing 3.5: Interface for copying metadata

int keyCopyMeta(Key *dest, const Key *source, const char *metaName);

int keyCopyAllMeta(Key *dest, const Key *source);

The name copy is used because the information is copied from one key to another. It has the same
meaning as in ksCopy(). In both cases it is a flat copy. keyCopyAllMeta() copies all metadata from
one key to another. It is more efficient than a loop with the same effect.

keyDup() copies all metadata as expected. Sharing metadata makes no difference from the user’s
point of view. Whenever a metavalue is changed a new metakey is generated. It does not matter if the old
metakey was shared or not. This is the reason why a const pointer is always passed back. The metakey
must not be changed because it can be used within another key.

3.2.3 KeySet

The data structure of KeySet did not change between Elektra 0.7 and Elektra 0.8mile4 as explained in
[35]. This subsection describes what has changed and deals with some general implementation issues.

3.2. DATA STRUCTURES 43

Operations

KeySet resembles the classical mathematical set. Operations like union, intersection or difference are
well defined. In mathematics typically every operation yields a new set. Instead, we try to reuse sets in
the following ways:

1. A completely new and independent KeySet as return value would resemble the mathematical ideal
closely. This operation would be expensive. Every Key needs to be duplicated and inserted into a
new KeySet.

Such a DEEP DUPLICATION was only needed in kdbSet() as we will see in Section 3.4.3 on
page 58.

2. The resulting KeySet is created during the operation, but only a flat copy is made. This means that
the keys in it are actually not duplicated, but only their reference counter is increased. This method
is similar to the mathematical model. Compared with a deep copy it can achieve good performance.
But all changes to the values of keys in the resulting KeySet affect the original KeySet, too.

ksDup(const KeySet *source) produces a new KeySet that way. The source is not changed
as shown by the const modifier.

3. The result of the operation is applied to the KeySet passed as argument directly. This is actually
quite common, but for this situation other names of the operations are more suitable.

For example, a union which changes the KeySet is called ksAppend().

4. A new KeySet is created, but the KeySet passed as parameter is reduced by the keys needed for the
new KeySet. This is useful in situations where many operations have to be applied in a sequence
reducing the given KeySet until no more keys are left. None of the reference pointers changes in
this situation.

ksCut(KeySet *ks, const Key *cutpoint) works that way. All keys below the cutpoint
are moved from ks to the returned key set.

Consistency

There are several ways to define consistency relations on key sets. For STRICT CONSISTENCY every
parent key must exist before the user can append a key to a key set. For example, the key set with the
keys

system

system/elektra

system/elektra/mountpoints

would allow the key system/elektra/mountpoints/tcl to be added, but not the key system/

apps/abc because system/apps is missing. File systems provide this kind of consistency.

44 CHAPTER 3. IMPLEMENTATION

These semantics are however not useful for configurations. Especially for user configurations often
only some keys need to be overwritten. It is not a good idea to copy all parent keys to the users config-
uration just because some constraint forces us to do so. For this reason we use a less strict definition of
consistency supporting such holes.

We also evaluated a form of WEAK CONSISTENCY. It avoids adding some unnecessary keys. A
constraint is that a key can be added only if it has a parent key. But the constraint does not apply if no
other key exists above the key about to be inserted. From that moment it will serve as parent key for other
keys. With the current implementation of KeySet, however, it is not possible to decide this constraint
in constant time. Instead its worst-case complexity would be log(n) ∗ x where n is the number of keys
currently in the key set and x is the depth of the key. The depth is the number of / in the key name. The
worst-case of the complexity applies when the inserting works without a parent key. For example, with
the keys

user/sw/apps/abc/current/bindings

user/sw/apps/abc/current/bindings/key1

user/sw/apps/abc/current/bindings/key2

the weak consistency would allow inserting user/sw/apps/abc/current/bindings/key3 because
it is directly below an existing key. It would also allow adding user/sw/apps/xyz/current because
it does not have any parent key. But it would not allow user/sw/apps/abc/current/bindings/

dir/key1 to add. The worst-case complexity was found to be too expensive, and hence KeySet has NO

CONSISTENCY check at all.
This means any key with a valid key name can be inserted into KeySet. The KeySet is changed so

that it is now impossible to append keys without a name. ksAppendKey(ks, Key *toAppend) takes
ownership of the key toAppend and will delete the key in that case. The caller does not have to free
toAppend: either it is in the key set or it is deleted.

BINARY SEARCH determines the position where to insert a key. The C version of binary search
bsearch() cannot tell where to insert a key when it is not found. So the algorithm has to be reimple-
mented. Java’s binary search binarySearch() uses a trick to both indicate where a key is found and
where to insert it with the same return code by returning the negative value ((−insertionpoint) − 1)

indicating where the new value should be inserted when the key is not found. Elektra now also uses this
trick internally.

Internal Cursor

KeySet supports an external iterator[16] with the two functions ksRewind() to go to the beginning and
ksNext() to advance the internal cursor to the next key. This side effect is used to indicate a position
for operations on a KeySet without any additional parameter. This technique is comfortable to see which
key has caused an error after an unsuccessful key database operation.

Elektra only has some functions to change the cursor of a key set. But these allow the user to compose
powerful functions. Plugins do that extensively as we will see later in Section 4.4.2 on page 79. The user
can additionally write more such functions for his or her own purposes. To change the internal cursor,

3.2. DATA STRUCTURES 45

it is sufficient to iterate over the KeySet and stop at the wanted key. With this technique, we can, for
example, realise lookup by value, by specific metadata and by parts of the name. Without an additional
index, it is not possible that such operations perform more efficiently than by a linear iteration key by
key. For that reason, Elektra’s core does not provide such functions. The function ksLookupByName(),
however, uses the more efficient binary search because the array inside the KeySet is ordered by name.

External Cursor

External cursor is an alternative to the approach explained above. Elektra provides a limited external

cursor through the interface ksGetCursor() and ksSetCursor(). It is not possible to advance this
cursor. The difference to the internal cursor is that the position is not stored within KeySet.

We considered providing an external cursor for performance reasons. But we found out that the
speed of iteration is mainly limited because of safety checks. The investigated methods become slower
proportional to the ease of use and safety. When using null pointers and range checks, the function is
noticeably slower than without. With the same amount of checks, using an external cursor is not much
faster than the ksNext() interface6.

But an external cursor directly accessing the array can be much faster7. For this endeavour, Elektra’s
private header files need to be included. Including private header files, however, should not be done with
levity because ABI compatibility will be gone on any changes of the data structures. This fact means the
application or plugin needs to be recompiled when any of the internal structures of Elektra are changed.
We strongly discourage including these header files.

Nevertheless, the overall performance impact for iteration is minimal and should not matter too much.
Even if only a single keySetMeta() is used inside the iteration loop, the iteration costs are insignificant.
Only for trivial actions such as just changing a variable, counter or marker for every key the iteration
costs become the lion’s share. In such situations an internal iterator yields better results. For example,
ksForEach() applies a user defined function for every key in a KeySet without having null pointer or
out of range problems.

3.2.4 Trie vs. Split

Up to now, we have discussed external data structures visible to the user of the library. The application
and plugin programmer needs them to access configuration. Last, but not least, we will show two internal
data structures. The user will not see them. To understand the algorithm, however, the user needs to
understand them as well.

Trie

TRIE or prefix tree is an ordered tree data structure. In Elektra, it provides the information to decide in
which backend a key resides[35]. The algorithm, presented in Section 3.4 on page 52, also needs a list

6External cursor with checks is in a benchmark about 10% faster.
7Using an unchecked external cursor can be about 50% faster than using the internal cursor with ksNext().

46 CHAPTER 3. IMPLEMENTATION

of all backends. The initial approach was to iterate over the Trie to get a list of all backends. But the
transformation of a Trie to a list of backends, contained many bugs caused by corner cases in connection
with the default backend and cascading mount points.

Split

So, instead of transforming the trie to a list of backends, we introduced a new data structure SPLIT. The
name Split comes from the fact that an initial key set is split into many key sets. These key sets are
stored in the Split object. Split advanced to the central data structure for the algorithm:

typedef struct _Split Split;

struct _Split {

size_t size;

size_t alloc;

KeySet **keysets;

Backend **handles;

Key **parents;

int *syncbits;

};

The data structure Split contains the following fields:

size contains the number of key sets currently in Split.

alloc allows allocating more items than currently in use.

keysets represents a list of key sets. The keys in one of the key sets are known to belong to a specific
backend.

handles contains a list of handles to backends.

parents represents a list of keys. Each parentKey contains the root key of a backend. No key of the
respective key set is above the parentKey. The key name of parentKey contains the mount point
of a backend. The resolver writes the file name into the value of the parentKey.

syncbits are some bits that can be set for every backend. The algorithm uses the syncbits to decide if
the key set needs to be synchronised.

3.3 Error Handling

3.3.1 Terminology

It is sometimes unavoidable that ERRORS or other problems occur that ultimately have an impact for the
user. Examples for such an error are that memory and hard disc space is exhausted. For a library it is

3.3. ERROR HANDLING 47

necessary to pass information about the facts and circumstances to the user because the user wants to be
informed why a requested action failed. So Elektra gathers all information in these situations. We call this
resulting information ERROR INFORMATION and WARNING INFORMATION depending on the severity.

If the occurred error is critical and ultimately causes a situation that the post conditions cannot be
fulfilled we say that Elektra comes into a FAULTY STATE. Such a faulty state will change the control flow
inside Elektra completely. Elektra is unable to resolve the problem without assistance. After cleaning
up resources, a faulty state leads to immediate return from the function with an ERROR CODE. As a user
expects from a library, Elektra never calls exit() or something similar, regardless of how fatal the error
is. In this situation error information should be set.

On the other hand, for many problems the work can go on with reasonable defaults. Nevertheless,
the user will be warned that a problem occurred using the warning information. These situations do not
influence the control flow. But applications can choose to react differently in the presence of warning
information. They may not be interested in any warning information at all. It is no problem if warning
information is ignored because they are stored and remain accessible in a circular buffer. The implemen-
tation prevents an overflow of the buffer. Instead the oldest warnings are overwritten.

When error or warning information is presented to the user, it is called ERROR MESSAGE or WARNING

MESSAGE. The user may reply to this message in which way to continue.

Error vs. Warning Information

When an error in an faulty state occurs, the error information must still hold the original error information.
So even in problems that would cause a faulty state, otherwise, the error information must be omitted or
transformed to a warning information. In some places only the adding of warning information is possible:

• The main purpose of kdbClose() is to free the handle. This operation is always successful and
is carried out even if some of the resources cannot be freed. Therefore, in kdbClose(), setting
error information is prohibited. Warning information is, however, very useful to tell the user the
circumstance that some actions during cleanup failed.

• Also in kdbOpen(), only adding warning information is allowed. If kdbOpen() is not able to
open a plugin, the affected backend will be dropped out. The user is certainly interested why that
happened. But it was decided not to make it an faulty state, because the application might not even
access the faulty part of the key hierarchy. An exception to this rule is if kdbOpen() fails to open
the default backend. This situation will induce an faulty state.

• In kdbSet(), the cleaning up of resources involves calling plugins. But during this process Elektra
is in a faulty state, so only adding of warning information is allowed. This ensures that the original
error information is passed unchanged to the user.

On the other hand, any access to the key database can produce warning information. Plugins are
allowed to yield warning information at any place and for any reason. For example, the storage plugin

48 CHAPTER 3. IMPLEMENTATION

reading a configuration file with an old syntax, is free to report the circumstance as warning information.
Warning information is also useful when more than one fact needs to be reported.

3.3.2 Error Information

Reporting Errors

Reporting errors is a critical task. Users expect different aspects:

• The user of the application does not want to see any error message at all. If it is inevitable, he
or she wants little, but very concrete information, about what he or she needs to do. The message
should be short and concise. Some error information may already be captured by the application,
but others like ”no more free disk space” have to be displayed. Conflicts should also be presented
to the user. It is a good idea to ask how to proceed if a diversity of possible reactions exists. In case
of conflicts, the user may have additional knowledge about the other program which has caused the
problem. The user is more likely to decide correctly by which strategy the configuration shall be
restored.

• The user of the library wants more detailed information. Categories of how severe the error is can
help to decide how to proceed. Even more important is the information if it makes sense to try the
same action again. If, for example, an unreliable network connection or file system is used, the
same action can work in a second try.

• A developer of the library8 wants full information about anything needed to be able to reproduce
and locate potential bugs. Ideally the error information should even mention the file and line where
the error occurred. This can help developers to decide if there is a bug inside Elektra or if the
problem lies somewhere else.

• Vast information is needed to support correct error handling in other programming languages. In
languages supporting exceptions, class name, inheritance or interface information may be neces-
sary. Language specific extensions are, however, not limited to exceptions. Other ways of handling
errors are continuations or longjmp in C. A plugin is free to add, for example, jmp_buf informa-
tion to the error information.

It is certainly not a good idea to put all this previously mentioned information into a single string.
Elektra chooses another way described in the next chapter.

Metadata

As stated above, a library always informs the user about what has happened, but does not print or log any-
thing itself. One way to return an error information is to add a parameter containing the error information.
In the case of Elektra, all KDB methods have a key as parameter. This key is additionally passed to every

8Library refers to both Elektra’s core and plugins.

3.3. ERROR HANDLING 49

plugin. The idea is to add the error and warning information as metadata to this key. This approach does
not limit flexibility, because a key can hold a potentially unlimited number of metakeys.

The error information is categorised in metadata as follows:

error indicates that an faulty state is present. The value of the metakey contains the name of all the
subkeys that are used for error indication. Metakeys do not guarantee any particular order on
iteration. Instead the user can find out the information by looking at this metavalue.

Additional metakeys yield all the details.

error/number yields a unique number for every error.

error/description is a description for the error to be displayed to the user. For example, the metavalue
can hold the text ”could not write to file”.

error/reason specifies the reason of the error. The human readable message is in the metavalue of
error/reason. It states why the error occurred. One example for it is ”no disc space available”.

error/ingroup contains ”kdb” if the error occurred inside the core. It contains ”module” if the error
happened while loading a module. The metavalue is ”plugin” if the error information comes from
a plugin.

error/module indicates the name of the specific module or plugin.

error/file yields the source file from where the error information comes.

error/line represents the exact line of that source file.

As we see, the system is powerful because any other text or information can be added in a flexible
manner by using additional metakeys.

Error Specification

The error specification in Elektra is written in simple colon-separated text files. Each entry has a unique
identifier and all the information we already discussed above. No part of Elektra ever reads this file
directly. Instead it is used to generate source code which contains everything needed to add a particular
error or warning information. With that file we achieved a central place for error-related information. All
other locations are automatically generated instead of having error-prone duplicated code. This principle
is called ”Don’t repeat yourself”[22].

In Elektra’s core and plugins, C macros are responsible for setting the error information and adding
warning information. In C only a macro is able to add the file name and line number of the source code.
In language bindings other code may be generated.

50 CHAPTER 3. IMPLEMENTATION

Sources of Errors

Key and KeySet functions cannot expose more error information than the error code they return. But,
of course, errors are also possible in these functions. Typically, errors concern invalid key names or null
pointers. These problems are mostly programming errors with only local effects.

The most interesting error situations, however, all occur in KDB. The error system described here is
dedicated to the four main KDB functions: kdbOpen(), kdbGet(), kdbSet() and kdbClose(). The
place where the configuration is checked and made persistent is the source of most error information. At
this specific place a large variety of errors can happen ranging from opening, locking up and saving the
file. Sometimes in plugins, nearly every line needs to deal with an error situation.

3.3.3 Exceptions

Exceptions are a mechanism of the language and not just an implementation detail[41]. Exceptions are not
intended to force the user to do something, but to enrich the possibilities. In this section, we discuss two
issues related to exceptions. On the one hand, we will see how Elektra supports programming languages
that provide exceptions. On the other hand, we will see how the research in exceptions helps Elektra to
provide more robustness.

Language Bindings

BindingBinding

PluginPlugin

BindingBinding

ApplicationApplication

ElektraElektra

Throws ExceptionThrows Exception

⇒ ⇒ Error InformationError Information

Error Information Error Information ⇒⇒

Receives ExceptionReceives Exception

Figure 3.2: Exception Flow

C does not know anything about exceptions. But Elektra was designed so that both plugins and
applications can be written in languages that provide exceptions as shown in Figure 3.2. One design goal
of Elektra’s error system is to transport exception-related information in a language neutral way from the
plugins to the applications. To do so, a language binding of the plugin needs to catch every exception and
transform it into error information and return an error code.

Elektra recognises the error code, stops the processing of plugins, switches to a faulty state and gives
all the plugins a chance to do the necessary cleanups. The error information is passed to the application
as usual. If the application is written in C or does not want to deal with exceptions for another reason,
we are finished because the application gets the error information inside metadata as expected. But, if

3.3. ERROR HANDLING 51

the application is written in another language, the binding translates the error code to an exception and
throws it. It is worth noting that the source and target language do not need to be the same.

Such a system needs a central specification of error information. We already introduced such a specifi-
cation file in Section 3.3.2 on page 49. The exception classes and converters can be generated from it. An
EXCEPTION CONVERTER is either a long sequence of try-catch statements that transforms every known
exception into an appropriate metakeys. Each exception thrown by the plugin has to be caught. Alterna-
tively, a converter can be a long switch statement for every error number. In every case the appropriate
exception is thrown.

The motivation for using exceptions is that in C every return value has to be checked. On the other
hand, the C++ exception mechanism allows the programmer to throw an exception in any place and catch
it where it is needed. So in C++ the code is not cluttered with parts responsible for error handling. Instead,
in a single place all exceptions of a plugin can be transformed to Elektra’s error or warning information.
The code for this place can be generated automatically using an exception converter.

Applications not written in C can also benefit from an exception converter. Instead of using the
metadata mechanism, the error information can be converted to the exception mechanism already used
for that application. We see that Elektra is minimally invasive in this regard.

Exception Safety

We can learn from the way languages define the semantics for EXCEPTION SAFETY. Exception safety
is a concept which ensures that all resources are freed regardless of the chosen return path[40]. Basic

guarantees make sure that some invariants remain on an object even in exceptional cases. On the other
hand, strong guarantees assure that the investigated operation is successful or has no effect at all. Methods
are said to be exception safe if the object remains in a valid state. The idea of exception safety is to ensure
that no resource leaking is possible. kdbSet() written in C++ would look like:

Listing 3.6: Exception safety for plugins

try {

plugin[1].set(); // may throw

plugin[2].set(); // may throw

plugin[3].set(); // may throw

...

plugin[PLUGIN_COMMIT].set();

// now all changes are committed

} catch (...) {

// error situation, roll back the changes

plugin[1].error(); // does not throw

plugin[2].error(); // does not throw

plugin[3].error(); // does not throw

...

52 CHAPTER 3. IMPLEMENTATION

// now all changes are rolled back

return -1;

}

// now do all actions on success after commit

plugin[POSTCOMMIT].set(); // does not throw

...

return 1;

// commit successful

This pseudo code is much clearer than the corresponding C code. Let us explain the guarantee Elektra
provides using this example. One by one plugin gets its chance to process the configuration. If any plugin
fails, the semantics resemble that of a thrown exception. All other plugins will not be executed. Instead,
the plugins get a chance to recover from the faulty state. In this catch part, the plugins are not allowed to
yield any error information, but they are allowed to add warnings.

3.4 Algorithm

3.4.1 Introduction

In this section, we will explain the heart of Elektra. kdbOpen() is responsible for the setup and the
construction of the data structures needed later. kdbGet() does, together with the plugins, all actions
necessary to read in the configuration. kdbSet() orchestrates the plugins to write out the configuration
correctly. kdbClose() finally frees all previously allocated data structures.

kdbOpen

kdbOpen() retrieves the mount point configuration with kdbGet() using the default backend. During
this process, the function sets up the data structures which are needed for later invocations of kdbGet()
or kdbSet(). All backends are opened and mounted in the appropriate parts of the key hierarchy. The
resulting backends are added both to the Split and the Trie object. kdbOpen() finally returns a KDB
object that contains all this information as shown in Figure 3.1.

The reading of the mount point configuration and the consequential self configuring of the system is
called BOOTSTRAPPING. Elektra builds itself up from the simple variant with a default backend only to
the sophisticated configuration system presented in this thesis.

kdbOpen() creates a Split object. It adds all backend handles and parentKeys during boot-
strapping. So the buildup of the Split object takes place once. The resulting object is then used for
both kdbGet() and kdbSet(). This approach is much better testable because the Split object is first
initialised using the mount point configuration – separated from the filtering of the backends for every
specific kdbGet() and kdbSet() request.

Afterwards the key hierarchy is static. Every application using Elektra will build up the same key
database. Application specific mount points are prohibited because changes of mount points would de-

3.4. ALGORITHM 53

stroy the global key database. Elektra could not guarantee that every application retrieves the same
configuration with the same key names any longer.

In kdbOpen(), nearly no checks are done regarding the expected behaviour of the backend. The
contract checker guarantees that only appropriate mount points are written into the mount point config-
uration. kdbOpen() checks only if the opening of plugin was successful. If not, the backend enclosing
the plugin is not mounted at all.

Removing Keys

In Elektra version 0.6, removing keys was an explicit request. Only a single Key object could be removed
from the database. For configuration files this method is inapplicable. For filesys, however, it was easy
to implement.

In Elektra version 0.7, the behaviour changed. Removing keys was integrated into kdbSet(). The
user tagged keys that should be removed. After the next kdbSet(), these keys were removed from the
key database. On the one hand, backends writing configuration files simply ignored the keys marked for
removal. On the other hand, filesys needed that information to remove the files. To make this approach
work for filesys, the marked keys were located at the very end of the KeySet and sorted in reverse.
With this trick, recursive removing worked well. But this approach had major defects in the usage of
KeySet. Because marking a key to be removed changed the sort order of the key set ksLookupByName()
did not find this key anymore.

So in the present version removing keys is consistent again. A KeySet describes the current config-
uration. The user can reduce the KeySet object by popping keys out. The kdbSet() function applies
exactly this configuration as specified by the key set to the key database. Contrary to the previous ver-
sions, the popped keys of the key set will be permanently removed.

The new circumstance yields IDEMPOTENT[33] properties for kdbSet(). The same KeySet can be
applied multiple times, but after the first time, the key database will not be changed anymore9.

It is, however, not known if keys should be removed permanently only by investigating the KeySet.
But only if this knowledge is present, the core can decide if the key set needs to be written out or if the
configuration is unchanged. So we decided to track how many keys are delivered in kdbGet(). If the
size of the KeySet is lower than this number determined at the previous kdbGet(), Elektra’s core knows
that some keys were popped. Hence, the next kdbSet() invocation needs to change the concerned key
database.

The situation is now much clearer. The semantics of popping a key will result in removing the key
from the key database. And the intuitive idea that a KeySet will be applied to the key database is correct
again.

9Note that kdbSet() actually detects that there are no changes and will do nothing. To actually show the idempotent
behaviour the KeySet has to be regenerated or the key database needs to be reopened.

54 CHAPTER 3. IMPLEMENTATION

3.4.2 kdbGet

It is critical for application startup time to retrieve the configuration as fast as possible. Hence, the
design goal of the kdbGet() algorithm is to be efficient while still enabling plugins to have relaxed
postconditions. To achieve this, the sequence of SYSCALLS must be optimal. On the other hand, it is not
tolerable to waste time or memory inside Elektra’s core, especially during an initial request or when no
update is available.

The synopsis of the function is:

int kdbGet(KDB *handle, KeySet *returned,

Key * parentKey);

The user passes a key set, called returned. If the user invokes kdbGet() the first time, he or she will
usually pass an empty key set. If the user wants to update the application’s settings, returned will typi-
cally contain the configuration of the previous kdbGet() request. The parentKey holds the information
below which key the configuration should be retrieved. The handle contains the data structures needed
for the algorithm, like the Split and the Trie objects, as shown in Figure 3.1.

kdbGet() does a rather easy job, because kdbSet() already guarantees that only well formatted,
non-corrupted and well-typed configuration is written out in the key database. The task is to query all
backends in question for their configuration and then merge everything.

Responsibility

A backend may yield keys that it is not responsible for. It is not possible for a backend to know that
another backend has been mounted below and the other backend is now responsible for some of the keys
that are still in the storage. Additionally, plugins are not able to determine if they are responsible for a
key or not. Consequently, it can happen that more than one backend delivers a key with the same name.

kdbGet() ensures that a key is uniquely identified by its name. Elektra’s core will pop keys that are
outside of the backend’s responsibility. Hence, these keys will not be passed to the user and we get the
desired behaviour: The nearest mounted backend to the key is responsible.

For example, a generator plugin in the backend A always emits following keys10:

user/sw/generator/akey (A)

user/sw/generator/dir (A)

user/sw/generator/dir/outside1 (A)

user/sw/generator/dir/outside2 (A)

It will still return these keys even if the plugin is not responsible for some of them anymore. This can
happen if another backend B is mounted to user/sw/generator/dir. In the example it yields the
following keys:

user/sw/generator/dir (B)

user/sw/generator/dir/new (B)

10(A) and (B) indicate from which backend the key comes from.

3.4. ALGORITHM 55

user/sw/generator/dir/outside1 (B)

user/sw/generator/outside (B)

In this situation kdbGet() is responsible to pop all three keys at, and below, user/sw/generator/dir
of backend A and the key user/sw/generator/outside of backend B. The user will get the resulting
key set:

user/sw/generator/akey (A)

user/sw/generator/dir (B)

user/sw/generator/dir/new (B)

user/sw/generator/dir/outside1 (B)

Note that the key exactly at the mount point comes from the backend mounted at user/sw/generator/
dir.

Sequence

resolve

retrieve

[needs update]

merge

return 1return �1

[error]

post�processing

return 0

[successful]

[everything up to date]

appoint

[up to date]

Diagramm: Aktivitätsdiagramm Seite 1Figure 3.3: kdbGet() Algorithm

kdbOpen() already creates a Split object for
the whole configuration tree. In this object,
kdbOpen() will append a list of all backends
available. A specific kdbGet() request usually
includes only a part of the configuration. For
example, the user is only interested in keys be-
low user/sw/apps/userapp. All backends that
cannot contribute to configuration below user/

sw/apps/userapp will be omitted for that re-
quest. To achieve this, parts of the Split object
are filtered out. After this step we know the list of
backends involved. The Split object allocates a
key set for each of these backends.

Afterwards the first plugin of each backend is
called to determine if an update is needed. If no
update is needed, the algorithm has finished and
returns zero.

Now we know which backends do not need an update. For these backends, the previous configuration
from returned is appointed from to the key sets of the Split object. The algorithm will not set the
syncbits of the Split object for these backends because the storage of the backends already contains
up-to-date configuration.

The other backends will be requested to retrieve their configuration. The initial empty KeySet from
the Split object and the relevant file name in the key value of parentKey are passed to each remaining
plugin. The plugins extend, validate and process the key set. When an error has occurred, the algorithm
can stop immediately because the user’s KeySet returned is not changed at this point. When this part
finishes, the Split object contains the whole requested configuration separated in various key sets.

56 CHAPTER 3. IMPLEMENTATION

Subsequently the freshly received keys need some post-processing:

• Newly allocated keys in Elektra always have the sync flag set. Because the plugins allocate and
modify keys with the same functions as the user, the returned keys will also have their sync flag set.
But from the user’s point of view the configuration is unmodified. So some code needs to remove
this sync flag. To relax the post conditions of the plugins, kdbGet() removes it.

• To detect removed keys in subsequent kdbSet() calls, kdbGet() needs to store the number of
received keys of each backend.

• Additionally, for every key it is checked if it belongs to this backend. This makes sure that every
key comes from a single source only as designated by the Trie. In this process, all duplicated and
overlapping keys will be popped in favour of the responsible backend as described in Section 3.4.2
on page 54.

The last step is to merge all these key sets together. This step changes the configuration visible to the
user. After some cleanup the algorithm finally finishes.

Updating Configuration

The user can call kdbGet() often even if the configuration or parts of it are already up to date. This
can happen when applications reread configuration in some events. Examples are signals11, notifications,
user requests and in the worst case periodical attempts to reread configuration.

The given goal is to keep the sequence of needed syscalls low. If no update is needed, it is sufficient
to request the timestamp12 of every file. No other syscall is needed. Elektra’s core alone cannot check
that because getting a timestamp is not defined within the standard C99. So instead the resolver plugin
handles this problem. The resolver plugin returns 0 if nothing has changed.

This decision yields some advantages. Both the storage plugins and Elektra’s core can conform to
C99. Because the resolver plugin is the very first in the chain of plugins, it is guaranteed that no useless
work is done.

Initial kdbGet Problem

Because Elektra provides self-contained configuration, kdbOpen() has to retrieve settings in the boot-

strapping process below system/elektra as explained in Section 3.1.2 on page 35. Because of the new
way to keep track of removed keys, the internally executed kdbGet() creates a problem. Without coun-
termeasures even the first kdbGet() of a user requesting the configuration below system/elektra fails
because the resolver finds out that the configuration is already up to date. The configuration delivered by
the user is empty at this point. As a result, the empty configuration will be appointed and returned to the
user.

11SIGHUP is the signal used for that on UNIX systems. It is sent when the program’s controlling terminal is closed. Daemons
do not have a terminal so the signal is reused for reloading configuration.

12On POSIX systems using stat().

3.4. ALGORITHM 57

A simple way to resolve this issue is to reload the default backend after the internal configuration was
fetched. Reloading resets the timestamps and kdbGet() works as expected.

3.4.3 kdbSet

Not the performance, but robust and reliable behaviour is the most important issue for kdbSet(). The
design was chosen so that some additional in-memory comparisons are preferred to a suboptimal sequence
of syscalls. The algorithm makes sure that keys are written out only if it is necessary because applications
can call kdbSet() with an unchanged KeySet. For the code to decide this, performance is important.

Properties

kdbSet() guarantees the following properties:

1. Modifications to permanent storage are only made when the configuration was changed.

2. When errors occur, every plugin gets a chance to rollback its changes as described in Section 3.3.3
on page 51.

3. If every plugin does this correctly, the whole KeySet is propagated to permanent storage. Other-
wise nothing is changed in the key database. Plugins developed during the thesis meet this require-
ment.

The synopsis of the function is:

int kdbSet(KDB *handle, KeySet *returned,

Key * parentKey);

The user passes the configuration using the KeySet returned. The key set will not be changed by
kdbSet(). The parentKey provides a way to limit which part of the configuration is written out. For ex-
ample, the parentKey user/sw/apps/myapp will induce kdbSet() to only modify the key databases
below user/sw/apps/myapp even if the KeySet returned also contains more configuration. Note
that all backends with no keys in returned but that are below parentKey will completely wipe out
their key database. The KDB handle contains the necessary data structures as shown in Figure 3.1.

58 CHAPTER 3. IMPLEMENTATION

Search for Changes

store

duplicate

return 1

[no sync]

[error]

divide

return 0

return �1

filter out

commit

[all success]

[sync]

[no sync needed]

Diagramm: Aktivitätsdiagramm Seite 1Figure 3.4: kdbSet() Algorithm

As a first step, kdbSet() divides the configura-
tion passed in by the user to the key sets in the
Split object. kdbSet() searches for every key
if the sync flag is checked. Then kdbSet() de-
cides if a key was removed from a backend by
comparing the actual size of the key set with the
size stored from the last kdbGet() call. We see
that it is necessary to call kdbGet() first before
invocations of kdbSet() are allowed.

We know that data of a backend has to be writ-
ten out if at least one key was changed or removed.
If no backend has any changes, the algorithm will
terminate at this point. The careful reader notices
that the process involves no file operations.

Duplicated Key Sets

If some backends need synchronisation, the algo-
rithm continues by filtering out all backends in the Split object that do not have changes. At this point,
the Split object has a list of backends with their respective key sets.

Plugins in kdbSet() can change values. Other than in kdbGet(), the user is not interested in these
changes. Instead, the values are transformed to be suitable for the storage. To make sure that the changed
values are not passed to the user, the algorithm continues with a deep duplication of all key sets in the
Split object.

Resolver

All plugins of each included backend are executed one by one up to the resolver plugin. If this succeeds,
the resolver plugin is responsible for committing these changes. After the successful commit, error codes

of plugins are ignored. Only logging and notification plugins are affected.

Atomic Replacement

For this thesis only file-based storage with atomic properties were developed. The replacement of a file
with another file that has not yet been written is not trivial. The straightforward way is to lock a file and
start writing to it. But this approach can result in broken or partially finished files in events like ”out of
disc space”, signals or other asynchronous aborts of the program.

A temporary file solves this problem, because in problematic events the original file stays untouched.
When the temporary file is written out properly, it is renamed and the original configuration file is over-

3.4. ALGORITHM 59

written. But another concurrent invocation of kdbSet() can try to do the same with the result that one
of the newly written files is lost.

To avoid this problem, locks are needed again. It is not possible to lock the configuration file itself
because it will be unlinked when the temporary file is renamed. So a third file for locking is needed. The
resolver currently implements this approach.

An alternative to this approach without locks is to completely rely on the modification time. The
modification time typically has only a resolution of one second. So any changes within that time slot will
not be recognised. For this approach, however, the name of every temporary file must be unique because
concurrent kdbSet() invocations each try to create one. The temporary file must also be unlinked in
case of a rollback. The opened temporary file can be passed to the storage plugins using a file name in the
directory /dev/fd. This approach may be more practical than the currently implemented way because it
does not need the additional lock file13.

Errors

The plugins within kdbSet() can fail for a variety of reasons. CONFLICTS occur most frequently. A
conflict means that during executions of kdbGet() and kdbSet() another program has changed the
key database. In order not to lose any data, kdbSet() fails without doing anything. In conflict situa-
tions Elektra leaves the programmer no choice. The programmer has to retrieve the configuration using
kdbGet() again to be up to date with the key database. Afterwards it is up to the application to decide
which configuration to use. In this situation it is the best to ask the user, by showing him the description
and reason of the error, how to continue:

1. Save the configuration again. The changes of the other program will be lost in this case.

2. The key database can also be left unchanged as the other program wrote it. After using kdbGet()

the application is already up to date with the new configuration. All configuration changes the user
made before will be lost.

3. The application can try to merge the key sets to get the best result. If no key is changed on both
sides the result is clear, otherwise the application has to decide if the own or the other configuration
should be favoured. The result of the merged key sets has to be written out with kdbSet().

Merging the key sets can be done with ksAppend(). The source parameter is the preferred con-
figuration. Note that the downside of the third option is that a merged configuration can be an not
validating configuration.

Sometimes a concrete key causes the problem that the whole key set cannot be stored. That can
happen on validation or because of type errors. Such errors are usually caused by a mistake made by the
user. So the user is responsible for changing the settings to make it valid again. In such situations, the
internal cursor of the KeySet returned will point to the problematic key.

13Nevertheless, the other way was chosen to test if the algorithm is exception safe as described in Section 3.3.3 on page 51.

60 CHAPTER 3. IMPLEMENTATION

A completely different approach is to export the configuration when kdbSet() returned an error
code. The user can then edit, change or merge this configuration with more powerful tools. Finally, the
user can import the configuration into the global key database. The export and import mechanism is
called ”streaming” and will be explained in Section 4.3 on page 70.

CHAPTER 4
Plugins

Figure 4.1 presents an overview of the plugins we developed in this thesis. The notation of generalisation1

has the usual meaning as a subtype or is-a relationship. No code-reuse or inheritance is needed or present
between the plugins. The notation of abstract classes2 groups the plugins together and is not reflected
by any real code. These groups represent a shared concept and often can be expressed by the clause
infos/provides.

network

Plugin

Storage Plugin

Application

Checker

Default Storage Limited Storage

type

glob

Code

hexcode

hosts

iconv

ni

null

simpleini

syslog

tcl

timeofday

tracer

validation

xmltool

Filter

dump

path

struct

ccode

Cross Cutting

error

fstab

hidden

resolver

dbus

Diagramm: Klassendiagramm Seite 1

Figure 4.1: Overview of Plugins

We will describe two large groups of plugins in their own sections: storage and filter plugins. But
we will handle checker plugins, and plugins which apply metadata together because they are often in
combined use.

1the arrows between two boxes
2the class names written in italic

61

62 CHAPTER 4. PLUGINS

We introduced the cross-cutting concerns in Section 2.3.3 on page 27. For some of these concerns,
the implementation pointed out to be straightforward and will not be discussed here. The error plugin

comes in handy for test purposes. It yields error information and returns error status codes on request and
will be discussed in Section 5.2.2 on page 87. The version plugin3 exports information about the core
library. The constants below the key system/elektra/version indicate the exact version of Elektra.

The hidden plugin hides Key objects whose names start with a ”.”. We presented the resolver plugin
in Section 2.3.2 on page 26. We explained the details of the resolver throughout Chapter 3, because the
control flow in the algorithm needs the return value of the resolver plugin to decide how to proceed.

4.1 Introduction

4.1.1 Interface

The collaboration of plugins stands and falls with the interface. Only with the same interface can the
framework guarantee exchangeability of plugins. Elektra solves this problem by presuming a specific
interface for every plugin.

This thesis introduces a new API for the plugins. The name of the functions in plugins is recom-
mended4 to be elektraPluginAction(). Plugin stands for the real plugin’s name. In the text,
however, Plugin will be used if we do not refer to a specific plugin. The interface basically con-
sists of five different actions with the function names: elektraPluginGet(), elektraPluginSet(),
elektraPluginOpen(), elektraPluginClose(), and elektraPluginError().

They are invoked as described:

• kdbOpen() calls elektraPluginOpen() of every plugin to let them do their initialisation.

• kdbGet() requests elektraPluginGet() of every plugin in the queried backends to return a
key set.

• kdbSet() usually calls elektraPluginSet() of every plugin in the queried backends to store
the configuration.

• kdbSet() also calls elektraPluginError() for every plugin when an error happens as ex-
plained in Section 3.3.3 on page 51. Because of elektraPluginError(), plugins are guaranteed
to have their chance for necessary cleanups.

• kdbClose() makes sure that plugins can finally free their own resources in elektraPlugin-
Close().

3The Figure 4.1 does not show the version plugin because it is internal and not developed separately.
4Actually the function name can be arbitrary as long as it is unique within the application. Only the name exported by the

contract and the plugin factory matters.

4.1. INTRODUCTION 63

The synopsis of the functions are:

int elektraTracerOpen(Plugin *handle, Key *errorKey);

int elektraTracerClose(Plugin *handle, Key *errorKey);

int elektraTracerGet(Plugin *handle, KeySet *returned, Key *parentKey);

int elektraTracerSet(Plugin *handle, KeySet *returned, Key *parentKey);

int elektraTracerError(Plugin *handle, KeySet *returned, Key *parentKey);

handle is a pointer to the plugin’s data structure.

returned is the data structure to be processed.

errorKey is a key where error information can be added as metadata.

parentKey has the mount point as a key name and the path to the configuration file as a value. Addition-
ally, the key has the same purpose as the errorKey.

A plugin can call three functions with its parameter handle: elektraPluginGetConfig(),
elektraPluginGetData() and elektraPluginSetData(). The plugin configuration can be re-
trieved with elektraPluginGetConfig(). Within this configuration, cascading is recommended so
that both the user and the system configuration of the plugins are taken into account. Plugins are only
allowed to have local variables to be reentrant. Note that also static variables are not allowed. But
plugins sometimes need a state, a cache or some data to be preserved between invocations. The last two
functions serve this purpose.

Information Flow

Most component systems pass information between the various components by calling methods of each
other. This is not the way Elektra’s plugin system works. Instead, the core passes a KeySet object
in one direction from plugin to plugin. Each of the plugins can modify the configuration or add any
other information using metakeys. While this approach is in general less flexible, this information flow
still allows powerful chaining. Because plugins do not have to bother to call other plugins, the plugin
development is also easier. The ordering of plugins in backends is controlled using contracts.

4.1.2 Contracts

Every plugin should provide a full contract to give information how it will work with other plugins. Most
parts of the contract are obligatory. Plugins cannot be loaded without this information. For example,
plugins must provide the clause infos/version. It is vital so that the plugin loader knows which
version of Elektra the plugin was built for.

64 CHAPTER 4. PLUGINS

Conditions

It is, however, up to the plugin not to have every clause of the contract. For example, the plugin might
not tell what it provides or needs. It can also leave any description out. In this situation it is unclear what
the plugin will do. Such a plugin can add or remove keys, and changes values and metadata regardless
what other plugins expect. If only such plugins existed there would be chaos. It would be impossible to
determine the behaviour of a backend which uses a multiple of such plugins.

To avoid this situation, every plugin written during the thesis exports a contract describing how the
plugin modifies the KeySet returned. Most often it is enough to state that it is a storage plugin or that
it will filter keys.

The data structures, however, are already responsible for most of the pre- and postconditions. Every
condition the data structure guarantees, takes away a concern for the plugins. All the parts that are already
guaranteed by data structures do not need to be stated in the contract.

Plugins should not be burdened to check too many postconditions. Instead, plugins focus on their
task. The plugin does not need to check the sync flag of keys or if the keys are below the mount point.
The core already guarantees correct behaviour as described in Section 3.4 on page 52.

To sum up, contracts give the information how a plugin interacts with others. It describes if, and
how, the KeySet returned is changed. Using contracts, we get a predictable behaviour, but still support
every kind of plugin.

Exporting Contracts

As already stated, some parts of the contracts are obligatory. kdb mount needs to know which symbols
the plugin exports. Only the elektraPluginGet() symbol is mandatory - it is used to generate this
information. Elektra’s core also uses the functions elektraPluginSet(), elektraPluginError(),
elektraPluginOpen() and elektraPluginClose() if available. Other functions like serialise,
unserialise or lookup which implement special features can be supported, but are ignored by the
core. For the user of the library these functions can be very useful. These functions shall either belong to
the concern of the plugin or be implemented within the plugin because of the dependences.

As described in Section 2.2.2 on page 20, the plugin can also provide descriptive information, for
example about the author and the licence. Advanced plugins can also export plugin configuration for other
plugins so that the overall backend works properly. Last, but not least, as enumerated in Section 2.3.4
on page 30 dependency and placement information makes the system reliable and robust. With that
information, plugins can be placed into a backend in an automatic and secure way.
system/elektra/modules provides for every module the information described above. The entry ex-
ists once a plugin of that module is loaded. For each module a special module backend is generated and
mounted at system/elektra/modules/pluginname. The elektraPluginGet() function gener-
ates this described contract on requests.

For example, the ccode plugin, implements:

4.1. INTRODUCTION 65

Listing 4.1: Exporting of Contract

int elektraCcodeGet(Plugin *handle, KeySet *returned, Key *parentKey)

{

if (!strcmp (keyName(parentKey), "system/elektra/modules/ccode"))

{

KeySet *contract = ksNew (30,

keyNew ("system/elektra/modules/ccode",

KEY_END),

keyNew ("system/elektra/modules/ccode/exports",

KEY_END),

//...

KS_END);

ksAppend (returned, contract);

ksDel (contract);

return 1;

}

// implementation of elektraCcodeGet

We see in Listing 4.1 that the plugin generates and returns the contract if, and only if, the name of the
parentKey is system/elektra/modules/ccode. The user and the contract checker can access the
contract of ccode below the key system/elektra/modules/ccode in the same way other configura-
tion is accessed.

Changing Plugins

This configuration is static and contains the contract information. In theory, the contract can be changed
without any problems in ways that it provides more and obligates less. But the problem is that it will
not be checked if this is the case because a recheck of the contracts of a backend is very expensive. The
contract checker doing this, only runs once during mount time. Changing contracts in an incompatible
way forces the user to remove all mount points where the plugin is and mount it again. Such actions are
only sustainable in a development phase and not in a productive environment.

But the plugin’s implementation is allowed to change without being remounted if it is a subtype of
the earlier version. Only in this situation it can be a drop-in placement. With a good testing framework
the behaviour can be checked to some extent.

We also see in Listing 4.1 that the code responsible for generating the contract and the code for
the implementation are next to each other. Plugins need to satisfy those self-imposed obligations that
are described in contracts. They ensure that plugins interact in predictable ways. So the process of
writing individual plugins and composing them together can be described as Component-Based Software
Engineering[4].

Plugins can also be viewed as framework extensions. A component abstracts plugins. But this term
is misleading in our case, because components usually can choose which interfaces they implement.

66 CHAPTER 4. PLUGINS

Elektra’s plugins, however, are restricted to implement one specific interface. Without contracts, plugins
could not interact as described in this chapter.

4.2 Filter

FILTER PLUGINS process keys and their values in both directions. In one direction they undo what they
do in the other direction. Most filter plugins available now encode and decode values. Storage plugins
that use characters to separate key names, values or metadata will not work without them.

4.2.1 Encoding

All occurrences of delimiting characters in storage plugins have to be eliminated using other characters.
A common approach is to define a so-called ESCAPE CHARACTER giving characters another meaning.
After the escape character, there might be the same character or another sequence of characters that can
be decoded back to the original characters. Using other characters has the advantage that the storage
plugin does not have to be aware of this character because the unwanted character will not show up at all.
Another way to en- or decode is to split up the content into small blocks of data and translate each block
to a character. base64[23] uses this technique. Plugins doing such operations will be referred to code

plugins.
Contracts define which characters must disappear so that the storage plugin can be used without a

hassle. During mounting the user can add one of the code plugins. If no code plugin is added, the backend
will not be validated, because of the infos/needs clause in the storage plugin. When the user selects
a code plugin, the plugin configuration will be extended. The storage plugin provides the necessary
configuration in the clause config/needs for the code plugin. The code plugin will automatically
retrieve the configuration it needs so that they can work together. The user, however, may choose to
escape even more characters.

Character Reduction

To store a large range of different characters in a sink which allows only a subset of characters to occur
there, a plugin must reduce the range of characters in a reversible way. For example, the ASCII character
set supports characters in the range 0−127. A storage plugin may only be able to represent the characters
in the ranges 22 − 50 and 62 − 127. Code plugins are able to reduce the character set. Key values can
have characters in the range 1− 255. Binary values even can have characters in the range 0− 255.

The contract checker must check if a plugin is present. It will do the necessary reduction at run time
because a code plugin is able to transform the character range with a given configuration.

The configuration of the code plugins define which characters should be escaped. The configuration
is interchangeable between these plugins, yielding the advantage that they are a drop-in replacement for
each other.

4.2. FILTER 67

A more sophisticated character reduction would negotiate the optimal configuration. An open problem
is that key names, metanames and metavalues are currently not escaped. For key names renaming may
change the order.

Hexcode

This code plugin translates each unwanted character into a two cypher hexadecimal character. The escape
character itself always needs to be encoded, otherwise the plugin would try to interpret the following two
characters in the text as a hexadecimal sequence.

Let us look at an example. Consider the following input:

value=abc xyz

Assuming the escape character is % the input would be encoded to:

value%3Dabc%20xyz

The disadvantage is that the length of the resulting string increases. In the worst case the hexcode
plugin makes the value three times larger.

Ccode

When writing a C string in C code some characters cannot be expressed directly but have a special one
letter abbreviation. The CCODE PLUGIN allows us to map any single escaped character to be replaced by
another single character and vice versa. The user can configure this mapping. Table 4.1 shows the default
mapping.

Table 4.1: Ccode escape characters, thanks to Wilson Mar[29]

Escape Name Hexadecimal
b backspace 08
t horizontal tab 09
n new line feed 0A
v vertical tab 0B
f form feed 0C
r carriage return 0D

back slash 5C
’ single quote 27
" double quote 22
0 null 00

This method of encoding characters is not as powerful as the hexcode plugin in terms of reduction.
The hexcode plugin allows reduction of the character set to ′0′ −′ 9′, ′a′ −′ f ′ and one escape character.
So it can represent any key value with only 17 characters. On the other hand, ccode cannot reduce the set
more than by half. So when all control characters and non-ASCII characters need to vanish, it cannot be
done with the ccode plugin. But it is perfectly suitable to reduce by some characters. The advantages are
that the size only doubles in the worst case and that it is much easier to read.

68 CHAPTER 4. PLUGINS

Iconv

Consider a user insisting on a latin1 character encoding because of some old application. All other
users already use, for example, UTF-8. For these users, the configuration files are encoded in UTF-8. So
we need a solution for the user with latin1 to access the key database with proper encoding.

On the other hand, contemplate an XML file which requires a specific encoding. But the other key
databases work well with the users encoding. So a quick fix for that backend is needed to feed that XML
file with a different encoding.

Iconv plugin provides a solution for both scenarios. It converts between many available character
encodings. With the plugin’s configuration the user can change the from and to encoding. The default
values of the plugin configuration are:

from encoding will be determined at run time.

to encoding is UTF-8.

Note that for writing the configuration from and to is swapped. A key database that requires a
specific encoding can make use of it. To sum up, every user can select a different encoding, but the key
databases are still properly encoded for anyone.

4.2.2 Reversibility

For filter plugins reversibility is essential. Their placement is in postgetstorage and presetstorage.
They are not allowed to deactivate infos/stacking in the contract, because this would destroy the
overall reversibility.

Let us look at the following example. We will encode a string twice with two different configured
ccode plugins. The ccode plugin A has the rule to encode:

U
A−→ \u

and the reverse to decode:
\u −→

A
U

The B ccode converts:
=

B−→ \e

Both need the rule of escaping the escape character. Otherwise the encoder would be confused if
escape characters appear in the text:

\
AB−−→ \\

So a sequence in correct order would be:
aUx=

A−→ a\ux=
B−→ a\\ux\e −→

B
a\ux= −→

A
aUx=

Obviously it also yields the same if B is applied first. But the intermediate steps are different then:
aUx=

B−→ aUx\e
A−→ a\ux\e −→

A
aUx\e −→

B
aUx=

Note that in the correct order it will always lead to the correct result, because the input of each plugin
for decoding is the same as the output of the previous encoding pass.

And because for any code plugin X

4.3. STORAGE 69

x
X−→ y −→

X
x

must be valid for any value x the overall en- and decode process of multiple code plugins must also
work.

If we apply the decoding of the B plugin in the wrong order, however, we run into a problem:
aUx=

A−→ a\ux=
B−→ a\\ux\e −→

A
a\Ux\e

which cannot be decoded by the B plugin that is unaware of \U. It is not guaranteed, however, that
this encoding error will be found in such situations. \U could be well defined and the sequence could lead
to a wrong result.

4.2.3 Null values

Elektra supports null values for binary keys. They differ from an empty string substantially in how they
are handled. Some plugins that work on values are not aware of null values. They would crash when they
try to access a value that is believed to be a string.

Other storage plugins also have problems with empty strings. The storage plugin simpleini that parses
the key = value expression by:

fscanf (fp, "%ms = %ms\n", &key, &value)

fails badly in recognising a line like:

user/simpleini/something =

The null plugin effortlessly solves both problems. It transcodes all null values to @NULL, empty strings
to @EMPTY and every string starting with @ to a string beginning with @@.

Using the null plugin simpleini generates lines like:

user/simpleini/example_empty_string = @EMPTY

user/simpleini/example_null_value = @NULL

user/simpleini/example_text = @@text

If a plugin states in its contract that it needs a null plugin, it is guaranteed that no empty or null value
is passed to it. That might simplify the programming in some cases. It also reduces the possibility of
errors. So if the null values are not handled, the plugin must write ”null” in the infos/needs clause of
the contract.

4.3 Storage

Storage plugins belong to the most important plugins in Elektra. Their purpose is to make configuration
permanent in key databases and to read preferences from there.

Storage plugins are usually implemented in elektraPluginGet() and elektraPluginSet(), but
do not provide elektraPluginOpen(), elektraPluginClose() and elektraPluginError().

On the one hand, in elektraPluginSet() they try to open the file in write-only mode. The file
name is passed into the value of the parent key. Now the whole content of the KeySet needs to be

70 CHAPTER 4. PLUGINS

serialised into this file. The algorithm consists of iterating over the KeySet and writing out the keys and
their values. If the file syntax or format is not suitable to store every type of a key, the contract has to
declare what the configuration must look like by providing the clause config/needs together with an
infos/needs.

On the other hand, elektraPluginGet() opens the file read only. The absence of the file is not
considered to be an error, but the resolver will generate a warning. The KeySet returned is empty
and waits to be filled by parsing the file content. Note that elektraPluginGet() also has to return the
contract on request.

Serialising

SERIALISATION is based on a simple principle. It is about converting data structure into a string. These
strings can be written on a hard disk or sent over a network. Afterwards the data structure can be rebuilt
by parsing the string. Storage plugins in Elektra do nothing more than serialising a KeySet to make them
persistent.

C can express this conversion in a function, but has the problem that serialising into files or strings
needs a different interface. So it is not possible with <stdio.h> to provide a method which can serialise
a KeySet to either a string or a file. Moreover, the API to strings does not have a way to enlarge the
buffer when it is too small. In C99, it is at least possible with snprintf to check for buffer overruns and
allocate enough space afterwards.

When using C++, the described issue presents no problem because there are streams which support
the desired behaviour out of the box. And even better – once a C++ serialiser is available it is trivial to
wrap it to additionally provide a C serialiser.

It is complicated in its details to fully serialise any data structure possible in a programming language
like C. There are different levels of complexity regarding serialisation. But the key database semantics
were chosen to make the serialisation as simple and efficient as possible. Only back referencing to old
metadata can be implemented for memory optimisation purposes as explained in Section 3.2.2 on page 41.
There are no other pointers in a KeySet. So the hard problems to detect and handle cycles are not present.
There is also no class hierarchy. Key and KeySet are the only classes which need to be serialised.

Another problem of serialisation is the byte order. Elektra supports binary values, but the byte order
for writing data is application specific. So applications must make sure that they use a portable byte order
or mark the byte order using metadata.

Streaming

STREAMING of configuration is basically the same as serialisation. It only differs in that the sink and
the source are streams rather than the key database. The stream could be stdout, a network or a user-
provided file. With streaming it is possible to serialise and deserialise without having to use the global
key database.

Storage plugins should export symbols to functions that provide such streaming. The functions are
usually present anyway. The approach becomes especially useful if the API across plugins is the same, so

4.3. STORAGE 71

there should be a suggestion how to call their C and C++ pendants. The plugin’s contract is responsible
to export these symbols. Applications can find the pointer to the function, for example, in system/

elektra/modules/dump/exports/serialize.
The streaming comes in handy when converting configuration files from any source to any target. One

plugin unserialises the stream to a KeySet object while a second plugin serialises it back to a stream. We
see that the key database is not involved.

4.3.1 Dump Storage

Dump is the name of the storage plugin that supports full Elektra semantics. Combined with a resolver
plugin it already assembles a fully featured backend. No other plugins are needed.

The file format consists of a simple command language with arguments. When an argument is binary
or string data the length needs to passed first. Because the size is known in advance, any binary dump is
accepted. Terminating characters present no problem. The commands are assembled similar to the ones
present in Elektra’s API.

Configuration Format

The file starts with the magic word kdbOpen followed by a version number. Processing can be stopped
immediately when it is not in Elektra’s dump format at all. A wrong version number most likely indicates
that the version of the plugin is too old to recognise all commands in the file.

The basic idea of the dump plugin is to write out the way that the KeySet needs to be constructed.
The dump plugin interprets such a file. The file also looks similar to C code that would create the KeySet.

Keys can contain any binary values and arbitrary metadata and are still stored and parsed correctly.
The dump plugin can even reconstruct pointers to metadata to save memory. When a pointer to the same
region of memory is found, a special command keyCopyMeta is written out that is able to reconstruct
the data structure the way it was before. The commands were designed to make parsing of the file an easy
task.

The plugin helps to define the semantics of Elektra’s key database as presented in Section 2.2.3 on
page 22. With the given commands, any possible KeySet can be written out and reconstructed identically.
It contains the commands which are needed to represent all semantics a KeySet has.

Example

The serialised configuration can look like:

Listing 4.2: Dump Example

kdbOpen 1

ksNew 207

keyNew 27 1

system/elektra/mountpoints

keyMeta 8 27

72 CHAPTER 4. PLUGINS

commentBelow are the mountpoints.

keyEnd

keyNew 32 19

system/elektra/mountpoints/dbusserialised Backend

keyEnd

keyNew 39 1

system/elektra/mountpoints/dbus/config

keyMeta 8 72

commentThis is a configuration for a backend, see subkeys for more information

keyEnd

keyNew 53 1

system/elektra/mountpoints/fstab/config/struct/FStab

keyCopyMeta 59 11

system/elektra/mountpoints/file systems/config/struct/FStabcheck/type

keyEnd

ksEnd

Because C strings are null terminated a null character is at the end of each parameter containing a
name or value. Null characters are, however, omitted in Listing 4.2.

4.3.2 Limited Storage

Storage plugins may be limited in various ways. The goal of the mount process is to determine a backend
that hides these disabilities from the user. Two issues cannot be compensated by filter plugins. A problem
occurs if the syntax is limited in such a way that it is not possible to store metadata. The other matter
occurs if the file format is restricted in which key names the configuration is allowed to have. Here we
say that the plugin is limited in which types it can express. If a plugin has one of these problems, it will
be referred to as a limited storage plugin. Applications have to be aware of that fact.

Metadata

A way to support arbitrary metadata in a limited configuration storage is to separate the storage plugin in
two parts: the value storage and the METADATA STORAGE. Of course, both need to persist key names to
identify a Key within the storage. But the value storage’s sole concern is to write out the key’s name and
value. It does not have to be aware that metadata exists at all. This makes the semantics simple so that
even trivial configuration files can be supported. In the following example, we see the fully compliant
value storage simpleini. It needs the equal sign and line break to be escaped.

Listing 4.3: INI Example

user/sw/app/key name1 = key value 1

user/sw/app/key name2 = key value 2

4.3. STORAGE 73

We will also describe another way to store metadata in a storage not aware of metadata. The idea is to
create a new key name that consists of the key name and the metaname concatenated. To recognise that
such a renaming took place, a special prefix is prepended as the following examples shows:

user/sw/app/key name1/_METAcomment = here is a comment

This technique can be used for encrypted, zipped or otherwise changed values so that the user never
gets the wrong value with a given key name even if the responsible plugin is missing[2]. Otherwise, a
plugin in the chain knows what to do when such a renaming is done.

Types

Configuration storage may also be limited in the types they can express. This situation cannot be circum-
vented. The user of the key database needs to know that in a specific place the keys must satisfy some
restrictions.

For example, the configuration file may be limited that only numbers can occur at specific places.
Configuration files can also have limits in the structure of configuration they can express. Some do not
have support for any nesting.

An example of such a format is /etc/hosts implemented by the hosts plugin as we will see in the
next subsection.

4.3.3 Ordering of Keys

Sometimes the built-in ORDERING of KeySet is not the desired order in the key database. Application
or plugin programmers may want a particular sequence not given by the name. For example, in an
application a list of file names is needed. The order of this list matters because the application tries out
the files in that sequence. Another example is a plugin that wants to preserve the ordering that was found
in a configuration file. A KeySet, however, is not directly able to represent such an alternative order. An
obvious way is to prefix the key name with a number to order them, but this is no option if the key name
is canonical. But metadata solve both problems without changing the names.

Hosts

To preserve the order of configuration items in the configuration file /etc/hosts, the HOSTS PLUGIN

uses the metadata order that indexes a particular element. It is a number larger than one and indicates
the position within the file.

The hosts file looks like:

Listing 4.4: Hosts Example

#/etc/hosts file

a new comment

192.168.0.23 first_entry

74 CHAPTER 4. PLUGINS

192.168.0.24 second_entry alias2 alias3 alias4 alias5

another comment

127.0.0.1 localhost

192.22.22.3 third_entry

The hostname acts as a canonical item in the file, so the key name is defined by appending the host-
name. The IP address is the value of this key. Alias names also happen to be unique per hostname, so
their names are also appended.

Using that schema the following keys are generated:

user/hosts /home/markus/.config/hosts

user/hosts/first_entry 192.168.0.23

user/hosts/localhost 127.0.0.1

user/hosts/second_entry 192.168.0.24

user/hosts/second_entry/alias2

user/hosts/second_entry/alias3

user/hosts/second_entry/alias4

user/hosts/second_entry/alias5

user/hosts/third_entry 192.22.22.3

Preserving Configuration Files

Empty lines and lines beginning with # are comments. They will be preserved together with comments in
the same line in the metakey comment of the following key. Comments after the last valid entry will be
discarded. They would need special handling. Alternatively, the first comment could be in the root key
and the comments below always go to the respective keys. The user’s expectations in western countries,
however, is rather that text above the Key describes what the Key is for. We see that localisation issues
can also be a topic within configuration files.

For the alias names no order preserving is done. So they will always be in alphabetical order when
the file is written out again. A similar strategy for preserving the order could be used as well.

Whitespaces are not kept either in all places, because the parser skips them. It would require a rewrite
of the parser to achieve that detail.

The problems mentioned above should give the plugin programmer an insight what needs to be done
in order to preserve a file exactly. These problems are, however, fixable with the arbitrary metadata
introduced in this thesis.

The easier variant of this problem is called ROUND-TRIPPING[38]. If one converts a KeySet to the
external representation and back again, the new KeySet must be equal to the old one. Every storage

4.3. STORAGE 75

plugin must fulfil this criteria for configuration. Not every storage plugin, however, can guarantee the
same for metadata.

Implementation of Order Preservation

The actual implementation of order preservation is done using a C array. In the array, the Key objects are
sorted by the index given by the metavalue order. During the serialisation process for every key in the
C array, ksLookup() finds out if the key has any aliases. Consequently, they just need to be written out.

The same Key can be aliased from both the array and the KeySet. The hosts storage plugin does not
free the keys referenced by the array. If the application wants to free the keys of the array, the programmer
can prevent double-frees by using the reference counter when the key is added or removed from the array.
This will happen automatically using the C++ bindings.

4.3.4 Other Representations

TCL Lists

Like other programming languages, TCL is able to represent data. That means that the same file which
is parsed by an Elektra plugin as configuration can also be executed by a TCL interpreter. The format of
dictionaries and lists is something which works well using TCL syntax[34]:

% set ol {{key val {a b c d}} {key val {a b c d}}}

{key val {a b c d}} {key val {a b c d}}

The tcl plugin implemented another variant. It uses a whitespace skipper and so whitespaces are
not allowed to be significant. So we introduced a similar version where spaces can be removed without
changing the configuration:

{ {user/key=val {metakey=b} {comment = huhu } } }

Which is equivalent to:

Listing 4.5: TCL Lists Example

{

user/key = val

{

metakey = b

}

{

comment = huhu

}

}

The advantage of TCL style lists is that also arbitrary metadata can be embedded in a natural and
distinguishable style.

76 CHAPTER 4. PLUGINS

XML

The XMLTOOL PLUGIN supports a verbose XML representation:

Listing 4.6: Elektra’s traditional XML Representation
<keyset xmlns="http://www.libelektra.org"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.libelektra.org elektra.xsd"

parent="system/filesystems">

<keyset parent="mediacdrecorder">

<key basename="device">

<value>/dev/hdc</value>

<comment>The device or label to be mounted</comment>

</key>

</keyset>

</keyset>

The same information can be presented much shorter:

Listing 4.7: Proposal for other XML Representation
<system>

<mediarecorder>

<device comment="The device or label to be mounted">/dev/hdc</device>

</mediarecorder>

</system>

Both XML formats have a problem deciding if a key has a null value or an empty value. The proposed
XML format additionally has the problem of deciding if a key exists at all. The null filter plugin can help
on that issue. It needs to fill in @NULL or @EMPTY if the key exists but does not have a value.

So if the key mediarecorder is actually present, but has an empty value, the example would be
changed to:

<system>

<mediarecorder>@EMPTY

<device comment="The device or label to be mounted">/dev/hdc</device>

</mediarecorder>

</system>

An encoding plugin must also take care of characters not allowed to occur in XML. A CDATA section
supports nearly all characters, but not the sequence]]>, so CDATA just changes the problem to another
sequence to escape.

4.4. PLUGGABLE CHECKER 77

C code

The C code which creates a new KeySet is another possible representation for a storage. It looks like:

ksNew (30,

keyNew ("system/key",

KEY_VALUE, "value",

KEY_END),

keyNew ("system/testkey",

KEY_META, "metaname", "metavalue",

KEY_END),

KS_END);

ksNew() introduces a new KeySet. keyNew() allocates a new Key that will be inserted in the key
set. keyNew() has an arbitrary number of arguments, each starting with a keyword.

4.4 Pluggable Checker

4.4.1 Introduction

PLUGGABLE CHECKER are plugins which are executed before the storage plugin writes out the config-
uration. They make sure that the configuration is valid, consistent and complete. Pluggable checkers
assure that problematic configuration is never passed to the storage plugin.

Types

Types are a defense shield against wrong interpretation in programming languages. On the other hand,
in a key database it is only possible to ensure that the value stored is in a given range and fulfils specific
properties or validation criteria. But the interpretation itself is done in the programming language. A
mapping between the values in the key database and the values of the variables of the programming
language is needed.

Types of a Key describe a set of allowed instances. Elektra stores such instances in the value. They
should be passed to a program in a safe way. Elektra stores type information to check Key objects within
the key. Metadata provides the place to store that information. The checking itself is done in kdbSet()

by a pluggable checker. This guarantees that no invalid data is stored in the key database. The information
on how to check a key may be stored in the key database, so that it is persistent and available when a value
is changed the next time.

Two-Phase Checking

Elektra works completely without integrated type checking on keys, but provides various ways to do
checks in a flexible way. All these checks rely on metadata. To provide maximum flexibility, the applying
and checking of types is separated. This establishes a two-phase type checking.

78 CHAPTER 4. PLUGINS

In a first phase, concrete dynamic types are applied as metadata to keys. Also in this step, optional
structure checks can take place. Structure checking involves inspecting the key names and allows def-
initions of interrelations between keys. The plugin doing these checks can overhaul if a specific child,
sibling or parent Key is present.

In a second phase, checks given by metadata will be executed. Checker plugins can also use metadata
from the storage applied by the user. These two steps, however, are independent from each other and have
their own use cases.

4.4.2 Checker Plugins

CORBA Types

A common and successful type system happens to be CORBA with IDL[43, 14]. The system is outstand-
ing because of the many mappings it provides to other programming languages.

The TYPE CHECKER PLUGIN supports all basic CORBA types: short, unsigned_short, long,
unsigned_long, long_long, unsigned_long_long, float, double, char, boolean, any and
octet. In Elektra octet is the same as char. When checking any it will always be successful, re-
gardless of the content. Elektra also added other types. empty will only yield true if there is no value.
string allows any non-empty sequence of octets.

Sometimes the type should expresses that, for example, both an empty or another type is valid. In
Elektra a space-separated list of types expresses that. If any of those types match, the whole type is valid.
For example, the type string empty equals the type any. This facility builds a union of the sets of
instances existing types specify.

enum works with a list of choices. Any of these choices confirms to the type, others do not. For
example, the type FSType accepts all file system names, for example, ext2, jfs or vfat.

The CORBA type system goes far beyond these basic types. In IDL, it is also allowed to define
classes, interfaces and generic containers. These user-defined types are however not useful on a single
Key.

To sum up, many basic types like int or char are convenient and CORBA ensures that they can be
converted to the specific type of the programming language. The CORBA type system also has its limits.
The types string and enum, however, can be unsatisfactory. While string is too general and makes no
limit on how the sequence of characters is structured, the enumeration is too finite. For example, it is not
possible to say that a string is not allowed to have a specific symbol in it. The next subsections introduce
alternative ways to check values.

Validation Check Plugin

The VALIDATION PLUGIN gives a powerful tool to check strings using regular expressions. They provide
a way to reduce the set of possible values for a key value.

The validation plugin looks for two metakeys. check/validation gives a regular expression to
check against. If it is present, check/validation/message may contain an optional humanly readable

4.4. PLUGGABLE CHECKER 79

message that will be passed with the error information.
The implementation consists of a loop checking for every key if it has the mentioned metakey. The

check itself is done by the POSIX regular expression library with the interface regcomp, regexec,
regerror and regfree. The flag REG_EXTENDED is passed so that the regular expression will be com-
piled as an extended regular expression. REG_NOSUB gives a better perfomance and subexpressions cannot
be used in this setup anyway.

The plugin also exports the function ksLookupRE() that does a lookup in a KeySet using a regular
expression. It starts from the current cursor of the KeySet and stops when the first value matches. Finally
this key is returned.

Network Check Plugin

While, in theory, a regular expression can express if a string is a network address, in practice, such an
attempt does not work well. The reason is that an unmanageable number of valid shortenings for IPv6
addresses makes the regular expression hard to write and understand.

So the idea of building such a complicated regular expression was discarded, but instead a dedicated
checker was introduced. The idea is to use the operating system facilities to resolve the network address.
If this succeeds, it is guaranteed that this network address will be valid when it is resolved by the same
interface afterwards.

Many network address translators coexist. In POSIX.1-2001 a powerful address translator is provided
with the interface getaddrinfo(). It is a common network address translation for both IPv4 and IPv6.
We used it to implement the NETWORK PLUGIN.

Path Check Plugin

The motivation to write this plugin is given by the two paths that exist in /etc/fstab: the device file and
the mount point. A missing file is not necessarily an error, because the device file may appear later when a
device is plugged in and the mount point may be there when another subsequent mount was executed. So
only warnings are yielded in that case. One situation, however, presents an error: Only an absolute path
is allowed to occur for both device and mount point. When checking for relative files, it is not enough to
look at the first character if it is a /, because remote file systems and some special names are valid, too.

If the metakey check/path is present, it is checked if the value is a valid absolute path. If a metavalue
is present, an additional check will be done if it is a directory or device file.

4.4.3 Apply Metadata

Glob Plugin

The GLOB PLUGIN provides coping metadata given by the plugin’s configuration to keys identified using
GLOB EXPRESSIONS. Globbing resembles regular expressions. They do not have the same expressive
power, but are easier to use. The semantics are more suitable to match path names.

80 CHAPTER 4. PLUGINS

• ”*” matches with any key name of just one hierarchy. This means it complies with any character
except slash or null.

• ”?” satisfies single characters with the same exclusions.

• Additionally, there are ranges and character classes. They can also be inverted.

The glob plugin iterates over a list of glob expressions for every key. Metadata is applied only for the
first expression that matches. So later expressions can be used as default values.

Glob statements are very useful together with contracts. Storage plugins can request the glob plugin
to fill up metadata before they receive the keys in elektraPluginSet(). In config/needs, the plugin
declares which keys should obtain which metadata. If the glob expression starts with a slash, the contract
checker will automatically prepend the mount point.

For example, the hosts plugin contract contains:

Listing 4.8: Contract for Glob

keyNew ("system/elektra/modules/hosts/config/needs/glob/#1",

KEY_VALUE, "/*",

KEY_META, "check/ipaddr", "", /* Preferred way to check */

/* Can be checked additionally */

KEY_META, "check/validation", "^[0-9.:]+$",

KEY_META, "check/validation/message",

"Character present not suitable for ip address",

KEY_END),

keyNew ("system/elektra/modules/hosts/config/needs/glob/#2",

KEY_VALUE, "/*/*",

/* Strict character validation */

KEY_META, "check/validation", "^[0-9a-zA-Z.:]+$",

KEY_META, "check/validation/message",

"Character present not suitable for host address",

KEY_END),

We see that the hosts plugin adds two glob statements with the clause config/needs. The first one
matches with hostnames, the second with aliases.

The glob plugin only fills the metadata in kdbSet(). This makes a difference compared with adding
the metadata already in kdbGet(). Using the glob plugin, the user will not see the metadata, but later
plugins in kdbSet() will.

To sum up, the glob plugin replenishes the keys with metadata. The plugin applies metadata in a
flexible way. This metadata can be used for later checks. Limited configuration storage plugins, like the
hosts plugin, use this feature. They need it because they are not able to store metadata themselves. It is
obviously not possible to apply values to non-existing keys.

4.4. PLUGGABLE CHECKER 81

Structure Checker

The glob plugin together with the check plugins create a good combination to check keys which are
present in the KeySet. For some storage plugins like fstab, however, missing keys are as fatal as not
validating keys – it is not possible to write a valid configuration file without them.

The problem can be described as a structure built with lists and other structures that must match with
the key names of a KeySet. If a structure must have an element, contrary to glob, the plugin can yield an
error if it is missing. During the matching, the plugin also applies metadata to the individual keys.

Such plugins that check the structure and interrelations of keys are called structure checker. They
can require that various subkeys have to or must not exist. This can happen recursively to specify any
structure.

The struct plugin implements such a behaviour. It allows enforcement of a strong consistency within
the keys of one backend. It needs a plugin configuration to know which structure it should check for. This
configuration can be passed from a storage plugin’s config/needs clause. For example, the contract
for fstab looks like:

Listing 4.9: Contract of fstab

keyNew ("system/elektra/modules/fstab/config/needs/struct",

KEY_VALUE, "list FStab",

KEY_END),

keyNew ("system/elektra/modules/fstab/config/needs/struct/FStab",

KEY_META, "check/type", "null empty",

KEY_END),

keyNew ("system/elektra/modules/fstab/config/needs/struct/FStab/device",

KEY_META, "check/type", "string",

KEY_META, "check/path", "device",

KEY_END),

keyNew ("system/elektra/modules/fstab/config/needs/struct/FStab/mpoint",

KEY_META, "check/type", "string",

KEY_META, "check/path", "directory",

KEY_END),

keyNew ("system/elektra/modules/fstab/config/needs/struct/FStab/type",

KEY_META, "check/type", "FSType",

KEY_END),

keyNew ("system/elektra/modules/fstab/config/needs/struct/FStab/options",

KEY_META, "check/type", "string",

KEY_END),

keyNew ("system/elektra/modules/fstab/config/needs/struct/FStab/dumpfreq",

KEY_META, "check/type", "unsigned_short",

KEY_END),

keyNew ("system/elektra/modules/fstab/config/needs/struct/FStab/passno",

KEY_META, "check/type", "unsigned_short",

82 CHAPTER 4. PLUGINS

KEY_END),

The key value of needs/struct within the plugin configuration marks the starting point. ”list”
describes the first structure to be generated. It is a built-in structure of the struct plugin that supports
all subkeys in one level. It applies to every direct subkey the structure check received by the template

parameter. The template parameter is, in this case, FStab. The rest of the configuration specifies how
entries of FStab must look.

The information applied to the keys is given through metadata. This metadata is copied to each key
during the structure check. If, however, a key is missing, the structure check will terminate with a failure.
Any additional key will also lead to an error.

The metadata may be evaluated by subsequent checks. In the situation of fstab a type checker and a
path checker are both useful.

This approach for defining the structure works recursively. Every element can have a value with a
new structure check. Additionally, multiple template parameters can support even more generic data
structures. This is, however, not yet implemented.

The purpose of such structure checks is that only a valid configuration can be stored and that neither
applications nor storage plugins are surprised by configuration they do not understand.

The fstab plugin trusts the fact that no invalid configuration is passed. It does not check it again.
Missing configuration would lead to partially set data structures. The internally used API setmntent
crashes in that case. This leads us to the purpose of contracts: We want a guarantee that specific conditions
are already met because we know that the code of the plugin cannot handle it.

Let us look at a different scenario with the same configuration. Instead of using the fstab plugin, we
will use a general purpose storage plugin5. No plugin exports a config/needs clauses for the struct
plugin in this situation. But the user can add the struct plugin and the plugin configuration, as shown in
Listing 4.9, to the backend manually. Applications still can be sure that only a specific configuration will
be stored and passed to them. The unwritten contract is between the application and the backend. No
contract checker, however, would detect the missing configuration.

5For example, the dump plugin. Note that the metadata will be stored permanently in this situation.

CHAPTER 5
Evaluation

5.1 Development Time

In this section we will evaluate how the modular approach can affect development time.

5.1.1 On Using Configuration Libraries

XML

We implemented a plugin for reading and writing XML as described in Section 4.3.4 on page 76. XML
has grown to a rather complicated standard and it is not easy to write an XML parser. So we decided not
to implement the parser, but to use the XML library libxml21.

The effort to implement this storage plugin was still significant. We needed several days to implement
it. The code allocated many XML elements and attributes. The problem was that all of them needed to
be freed properly. That was not done in the first implementation. So it took additional development time
to make sure that the code has no memory leaks after running.

INI Configuration Libraries

Dozens of other libraries, that can help for storage plugins, exist. For example, appconf, CFL, sim-
pleXMLconf, OSSP, cfg, varconf, ConfigLib, UT_var, Nickel, SimpleIni, rudeConfig, libINI, RudeCon-
fig are some of the INI-like parsers available.

We investigated these parsers and decided in favour of Nickel as the basis for a case study. It is as
portable as Elektra needing only the standard C99. The licence, called zlib, is similar. Nickel is fast with
a reasonable memory footprint and can parse many variants of INI files with sections including the KDE
variants2. The disadvantage of Nickel is, however, that it discards comments.

1The XML C parser and toolkit of Gnome.
2We evaluated this with a test reading in a typical KDE configuration.

83

84 CHAPTER 5. EVALUATION

Case Study: Nickel

The implementation of a proof-of-concept NI PLUGIN using Nickel took slightly more than one hour.
Half of this time was spent integrating Nickel into the build system. Arbitrary strings work out-of-the-
box gracefully even without any code plugins.

The ni plugin immediately profits from the Nickel’s error handling. Checking some return values is
all that is needed. To sum up, no other way of implementing storage plugins yields so many features in
so short a time.

Conclusion

All these advantages also apply if an application directly uses a configuration library. But the advantage
of Elektra is that the resolver plugin determines the file name and detects conflict and update issues. But
more than this, many other existing plugins can extend the overall functionality of the backend. Because
of the dynamic mounting properties of Elektra, it is possible to change the backend for specific operating
systems or use-cases as needed for resolving file names.

We ascertained that storage plugins can benefit a lot from existing configuration libraries. We found
out that the API design of these libraries significantly influences the needed time to write a storage plugin.

5.1.2 On Using Grammars

Writing Grammars

Typically, hand-written parsers are used in Elektra to implement storage plugins. We implemented some,
for example, for parsing hosts and fstab configuration files. These files can be considered as simple
configuration files because they do not have nested sections in them and do not support arbitrary metadata.

Nevertheless, writing a parser for them took considerable time and effort. It took about one day to
implement each of these storage plugins. On the other hand, to preserve the ordering of the items in the
/etc/hosts configuration file, as presented in Section 4.3.3 on page 73, we only needed some hours.
But for other ”simple” changes like preserving white spaces a rewrite of the parser would be necessary.

Case Study: TCL Lists

We developed the TCL Lists storage plugin with rapid application development. Instead of parsing the
content ourselves we used spirit::qi. It generates the code that parses the configuration file. We only
had to write the grammar and functions that fill up the data structures during parsing. The main problem
was to get used to the spirit::qi library. Once we understood the concepts it was easy to actually write
the code. The generated parser is much more powerful than our hand-written code for hosts or fstab
storage. The structure of the file is nested and it supports metadata. Nevertheless, we needed about the
same time to implement it.

The inline grammar specification is short and gives a good idea of what the configuration file looks
like:

5.1. DEVELOPMENT TIME 85

Listing 5.1: Grammar for TCL Lists

query = ’{’ >> pair >> *(pair) > ’}’;

pair = ’{’ >> key > ’=’ >> val >>

*(’{’ >> metakey > ’=’ >> metaval > ’}’) >

’}’;

The specification of the key, val, metakey and metaval also binds some functions to be called by
the parser:

key = (+(qi::char_ - qi::char_("={}[]<>")))

[boost::bind(&Printer::add_key, &p, _1)];

val = (+(qi::char_ - qi::char_("={}[]<>")))

[boost::bind(&Printer::add_val, &p, _1)];

metakey = (+(qi::char_ - qi::char_("={}[]<>")))

[boost::bind(&Printer::add_metakey, &p, _1)];

metaval = (+(qi::char_ - qi::char_("={}[]<>")))

[boost::bind(&Printer::add_metaval, &p, _1)];

The code for the functions themselves is trivial. For example to add a metakey:

void Printer::add_metaval(std::vector<char> const& c)

{

std::string s(c.begin(), c.end());

current.current().setMeta<string>(metaname, s);

}

Because we used a white space skipper it was not possible to store the white spaces in metadata.

Result

An unexpected disadvantage is the additional compile time when using this approach. spirit::qi

builds up the parser at compile time using C++ meta programming techniques. Compiling the source file
with the grammar takes about3:

4,96s user 0,36s system 99% cpu 5,379 total

This fact was annoying during development with short compile-test cycles.
In fact, a storage plugin using grammar is not necessarily implemented in a shorter time. Especially

not, if developers do not use grammars daily. We rewrote the grammar once so that the configuration file
looks more like TCL lists. The rewrite of the grammar, however, was done within minutes. We concluded
that the setup and the learning of the syntax was the problem why it took so long the first time.

To sum up, it depends on the configuration file which technique should be preferred. But mainly the
skills of the developers influence which variant should be chosen. The advantage of the grammar is that
the specification of the configuration file format can be modified easily without changing the other code
around it. For other changes, such as remembering white spaces, both variants can have their problems.

3Measured with the setup as described in Section 5.3.1 on page 89 using the tool time.

86 CHAPTER 5. EVALUATION

5.2 Modularity

In this section, we will evaluate how modularity affects the overall flexibility, development time and other
properties of the system. In the Elektra situation of version 0.7, every feature needs to be implemented
in each backend. The modular approach allows us to implement every feature in a dedicated plugin. To
evaluate the difference, we developed about twenty plugins as described in the Chapter 4.

Then we tried out in some scenarios whether the different combinations of the plugins work together.
We present the results in the following subsections.

5.2.1 Separation of Non-Portable Code

We justify the decision of splitting up the resolving of the file name and the other storage activities with
the statement that it is possible afterwards to write portable storage plugins. We implemented seven
storage plugins.

During evaluation, we found out that six of these plugins work completely portably. They only use
C99 or ISO/IEC C++ 2003. They do not need any operating system dependent code. The exception is the
fstab plugin that uses the BSD 4.3 specific setmntent interface. It is not portable for that reason.

We conclude that our initial promise, that it will be possible to write portable storage plugins, could
be proved.

Code Plugins

The code plugins allow transparent encoding and decoding of all values in a key set. Using contracts, stor-
age plugins can pass a configuration to the code plugins to control which characters should be escaped.
We implemented two code plugins: hexcode and ccode plugin. We tested both plugins in many com-
binations with the storage plugins. As expected, the encoded values were written into the configuration
files.

Storage plugins that exported configuration worked with both ccode and hexcode plugins without any
changes in the code. We concluded that it is possible to transparently exchange the code plugins with the
effect that the configuration file will be encoded differently but without any changes to the application.

5.2.2 Pluggable Types

Elektra does not have a built-in type system. Instead, we implemented some plugins that check the keys
according to metadata.

Two-Phase Approach

We learned that for key databases it is useful to determine the type of a specific Key object first and then
check if the value conforms to it. We have had success in separating these two tasks in two different sets
of plugins. Even though metadata is applied to the keys, we managed to make this metadata invisible

5.2. MODULARITY 87

to the user if the storage plugin discards it. Typical administrator mistakes are now caught with this
technique.

For example, we tested storing host names with invalid IP addresses:

> kdb set user/hosts/new_hostname 192.168.0.333

create a new key user/hosts/new_hostname with string 192.168.0.333

a key was thrown

number: 51

description: Value of key is not a valid IP Address

ingroup: plugin

module: network

at: /home/markus/Elektra/current/src/plugins/network/network.c:120

reason: name: user/hosts/new_hostname value: 192.168.0.333

message: Name or service not known

1 Warnings were issued

warnings/#00: number description ingroup module file line function reason

number: 36

description: could not unlink file

ingroup: plugin

module: resolver

at: /home/markus/Elektra/current/src/plugins/resolver/resolver.c:326

The network plugin correctly detects that this IP address is invalid and refuses to write it out. We also
see the warning that it was not possible to unlink the file because the storage plugin did not even write the
temporary file, so the resolver could not remove it.

To sum up, Elektra’s pluggable type checker uses a two phase approach. In the first phase, a plugin
assigns built-in or basic types to keys using metadata. In the second phase, the actual checks are accom-
plished. Elektra actually prevents committing any data that does not conform to given types or refused by
other checkers.

Error Plugin

The error plugin is also a checker plugin. Like the other checker plugins, it will only do anything when
specific metadata is present. But unlike the other checker plugins, no key value will be successfully
validated. Instead, the error plugin will always return an error status. With the error plugin, it is possible
to trigger an error state with any desired error information on purpose.

The resolver plugin creates a temporary file in the beginning of the kdbSet() algorithm. When it
gets its chance, it will move the temporary file on success or remove it on error. So both on commit or
rollback the temporary file should be gone if the algorithm works correctly.

During tests, the temporary file was always removed in both situations: When kdbSet() was suc-
cessful, but also when the error plugin triggered an error. We concluded that the exception safety works
as described in Section 3.3.3 on page 51.

88 CHAPTER 5. EVALUATION

Type Checking

We implemented a type checker that is both able to check the structure of the configuration and the type
of the specific values.

Storage plugins like fstab use this type checker. Because of previous tests, we knew that the fstab
plugin crashes when not well-structured configuration is passed. But together with the type checker
no more crashes occurred, but the system now yields a detailed error message that the structure of the
configuration does not look like the contract of the fstab plugin described.

Because the contract describes the structure and types in a general way, we concluded that other
plugins can make use of the same checks, too.

We also tried to use the structure checker with dump. This storage plugin does not limit the type and
structure of the configuration by itself. We tried to apply the same plugin configuration as the fstab plugin
exports for the struct plugin. The result was that we were not able to store any configuration that would
not conform to fstab configuration into the backend using the dump storage.

We also learned, however, that the fstab plugin has some semantic differences. It does not remember
the name of a specific entry. That means that the fstab storage does not fulfil the round-tripping properties.
So, in fact, the current implementation of the fstab storage cannot be considered as practically usable.

We conclude that applications can make use of type checking. If they have specific requirements what
the configuration must look like, they can add the struct plugin together with their own plugin configura-
tion. Note that this approach improves the situation compared to an application that checks configuration
while reading. With type checking, it is possible to avoid that the malfunctioning configuration is even
stored.

5.2.3 Cross-Cutting Concerns

We have already learned that Elektra now supports various cross-cutting concerns in separate plugins.
We will evaluate how well this works. Our test setup was the kdb tool with different backends mounted.
Some backends have only syslog, some only D-Bus, some none and some both plugins inserted.

During tests we saw that in all scenarios the correct side effects took place. We found out that it is
easy for the administrator to create a new backend with the desired cross-cutting concerns supported.

When applications can run post-install scripts, they can also create their backends with the desired
side effects during installation. Our conclusion is that this system works in a flexible manner and supports
cross-cutting concerns of applications and administrators well.

5.2.4 Conclusion

We evaluated different combinations of filter plugins, type checking plugins and cross-cutting concern
plugins with storage plugins. We asked ourselves if the system is also capable of handling any combina-
tion of these plugins.

So we tested a backend with dbus, syslog and validation plugins at once. It successfully logged and
notified changes of the persistent configuration. When the validation failed, the rollback was successfully

5.3. RUN TIME 89

logged, but no notification was sent. Each of these plugins exactly fulfilled its purpose as before. They
did not influence each other.

Even struct and glob plugins can be used together. In that case, however, some metadata might be
overwritten by the respective other plugin. This combined usage of plugins support many more possibil-
ities than the resolver, storage and one other plugin as described before.

In this thesis, 9 plugins related to filtering and cross-cutting concerns were implemented. 4 plugins
can validate configuration4. 7 plugins actually read and write configuration. Using a storage plugin with
another plugin yields 13 · 7 = 91 possibilities to form a backend. It would not have been possible for us
to add all these features to all of the 7 storage plugins.

But the approach is even more powerful because it allows us to use more than one additional plugin.
If we take 4 plugins out of the pool of 13 plugins, we have 13!

4!(13−4)! = 715 ways to enrich the 7 storage
plugins with additional features.

5.3 Run Time

In this section, we will evaluate how Elektra and its plugins will change the run time behaviour of appli-
cations. Because of the massive changes in both algorithm and features, only the most recent version at
the time of writing this thesis, will be studied. It is not compared with any previous versions because they
lack, for example, updating keys and detecting conflict situations.

5.3.1 Setup

Hardware setup

The processor to run the tests is an AMD Athlon(tm) 64 X2 Dual Core Processor 3600+. It has a total
of 5980 Megabyte free memory space as measured with the tool free. The hard disks run in a soft-
ware RAID 55 array. On top of the RAID 5 array, LVM6 supports flexible partitions formatted with jfs.
The output of hdparm version 8.9 gives a conclusion concerning the throughput of data on these LVM
partitions:

Timing cached reads: 1946 MB in 2.00 seconds = 973.97 MB/sec

Timing buffered disk reads: 618 MB in 3.01 seconds = 205.59 MB/sec

This LVM partition was used to store the configuration as described later.

Software setup

The software setup is basically completely defined by Debian Lenny 5.0.6. The only relevant exception
is the usage of an older kernel:

4The two plugins that apply the metadata will help them.
5redundant array of inexpensive disks
6Logical Volume Manager

90 CHAPTER 5. EVALUATION

Linux version 2.6.24-1-amd64 (Debian 2.6.24-7) (dannf@debian.org) (gcc

version 4.1.3 20080114 (prerelease) (Debian 4.1.2-19))

#1 SMP Sat May 10 09:28:10 UTC 2008

Nevertheless, we will provide a list of version numbers of the software that influences the results:

• Valgrind version valgrind-3.3.1-Debian

• gcc (Debian 4.3.2-1.1) 4.3.2

• cmake version 2.6-patch 0

• GNU Make 3.81

• GNU libc 2.7

Tested Program and Library

All tests run with Elektra 0.8mile4 that was developed in the thesis. The compile options vary and are
explained in the respective places.

The tested program was written specifically for the benchmarks. The C macros were set as listed
below:

#define KEY_NAME_LENGTH 1000

#define KEY_ROOT "user/benchmark"

#define NUM_DIR 100

#define NUM_KEY 100

The time measurement code is presented below:

struct timeval start;

void init_time (void)

{

gettimeofday (&start,0);

}

void print_time (char * msg)

{

struct timeval measure;

time_t diff;

gettimeofday (&measure, 0);

diff = (measure.tv_sec - start.tv_sec) * 1000000 + (measure.tv_usec - start.tv_usec);

fprintf (stdout, "%20s: %20d Microseconds\n", msg, (int)diff);

gettimeofday (&start,0);

}

The code below generates the key names that will be stored and retrieved:

5.3. RUN TIME 91

int creator (KeySet *large)

{

int i,j;

char name [KEY_NAME_LENGTH + 1];

char value [] = "data";

for (i=0; i< NUM_DIR; i++)

{

snprintf (name, KEY_NAME_LENGTH, "%s/%s%d", KEY_ROOT, "dir", i);

ksAppendKey(large, keyNew (name, KEY_VALUE, value, KEY_END));

for (j=0; j<NUM_KEY; j++)

{

snprintf (name, KEY_NAME_LENGTH, "%s/%s%d/%s%d", KEY_ROOT, "dir", i, "key", j);

ksAppendKey(large, keyNew (name, KEY_VALUE, value, KEY_END));

}

}

return 1;

}

Listing 5.2: Benchmark program
int main()

{

KeySet * large = ksNew(NUM_KEY*NUM_DIR, KS_END);

init_time ();

creator (large);

print_time ("New large keyset");

Key *key = keyNew (KEY_ROOT, KEY_END);

KDB *kdb = kdbOpen(key);

keySetName (key, KEY_ROOT);

print_time ("Opened key database");

KeySet *n = ksNew(0);

kdbGet(kdb, n, key);

ksDel (n);

print_time ("Read in key database");

kdbSet(kdb, large, key);

print_time ("Write out key database");

kdbClose(kdb, key);

print_time ("Closed key database");

ksDel (large);

keyDel (key);

return 0;

}

5.3.2 Size of the Library

On the 64bit setup as described above, the size of the library libelektra.so.0.8.0mile4 is:

• The library needs 192 kilobytes compiled in debug mode without optimisations.

92 CHAPTER 5. EVALUATION

• With the debug symbols removed7 the size of the program is reduced to 93 kilobytes.

• The library needs 96 kilobyte compiled in release mode.

• With the debug symbols removed the size of the program is reduced to 85 kilobyte.

Although it occupies only little space it supports all the features as presented in this thesis.

5.3.3 Dependences of the Library

The library libelektra.so.0.8.0mile4 does have the following dependences determined by the program
ldd:

linux-vdso.so.1 => (0x00007fff87bfe000)

libdl.so.2 => /usr/lib/debug/libdl.so.2 (0x00002af9230ec000)

libc.so.6 => /usr/lib/debug/libc.so.6 (0x00002af9232f1000)

/lib64/ld-linux-x86-64.so.2 (0x0000555555554000)

These are the typical dependences for a library that only needs libc and uses dynamic linking. No
additional dependences are needed in Elektra’s core even though it allows us to accomplish the tasks
described in this chapter.

5.3.4 Benchmarks

Preparation

In user/benchmark, the following plugins were mounted: resolver, dump, null, hexcode, glob and type.
None of the additional plugins changes anything because no umlauts, no types, no empty values and so
on are present in the keys. We stored ten thousand keys in user/benchmark already before running the
tests using the same program given in Listing 5.3.1. During the tests the load of the system was 2.39 2.94
2.73 6/158 14296, as given by /proc/loadavg. Some programs like a web browser, editor and similar
were running to give a daily use scenario.

Time Measurements

First we will test the code compiled without optimisations in debug mode and with twelve backends
mounted. Below is the output of the time measurements of the program as given in Listing 5.2 describing
how long the typical actions take for this setup:

New large keyset: 75689 Microseconds

Opened key database: 41640 Microseconds

Read in key database: 257556 Microseconds

Write out key database: 325842 Microseconds

Closed key database: 737 Microseconds

7Using the program strip.

5.3. RUN TIME 93

In the second test we compiled Elektra in release mode. The output of the program is:

New large keyset: 76016 Microseconds

Opened key database: 11953 Microseconds

Read in key database: 207632 Microseconds

Write out key database: 300069 Microseconds

Closed key database: 665 Microseconds

We see that – although the number of keys is high for a single application, a text configuration file
is used, and many useless actions are done – the whole task is barely noticeable for the user. Time
measurement, however, is very inaccurate and it would be difficult to determine the actual costs of the
single functions.

So for comparison between functions, the tool CALLGRIND from the VALGRIND suite was used.
Callgrind determines the costs by counting instructions[42]. It is well suited to compare the cost of
individual functions.

Instructions Measurements

The whole benchmark program as shown in Listing 5.2 takes 922 million instructions, which is divided
by kdbSet() needing 437 million instructions and kdbGet() needing 377 million instructions.

kdbGet() already has a surprisingly good ratio with nearly all the costs devoted to the dump::un-
serialize function needing 316 million instructions. It is, however, feasible that dump::unserialize
is inefficient. The rest is devoted to splitting the key set with 11 million and merging with 32 million
instructions.

The hexcode plugin with 4.6 million instructions presents the additional plugin with the highest costs.
Compared with other costs, resolving is cheap with only 165 thousand for opening and less than 20

thousand instructions for the other operations.
The null checker with nearly 1.7 million instructions has only a fraction of the hexcode’s costs.
The type checker is another major player in terms of resources. It needs 252 million, but only because

Key::getMeta always throws an exception when no type information is found: exception handling of
the type checker costs 223 million instructions. These are some spots where optimisations certainly can
be worthwhile.

The glob plugin only needs about 800 thousand instructions. elektraTrieLookup also has high
costs with about 18 million instructions.

5.3.5 Conclusion

In the current situation, additional plugins have only a fraction of the overall costs. Plugins with side
effects that do not iterate over all keys are, as expected, no problem in terms of time penalty. The
overhead of single plugins that only iterate over all keys is also insignificant. We conclude that it presents
no problem to split up all cross-cutting concerns in different plugins.

94 CHAPTER 5. EVALUATION

Figure 5.1: Callgraph of the benchmark program

5.4. CONTRACTS 95

But plugins that change all values of keys should only be used with care. Ideally, only a single plugin
should be concerned with all or most encoding issues. But changing all values still costs only 1% of the
overall instructions in the example.

As desired, the actual writing and reading compose the largest part. We also see that some program-
ming techniques like throwing exceptions must be reserved for aborting operations. We concluded that
the current use of exception in the type plugin is not appropriate.

5.4 Contracts

Contracts play a critical role in the interplay of plugins. We will evaluate how well kdb mount works and
where the limits of contracts are by describing the lesson learned during the work.

5.4.1 Contracts Checker

The contract checker includes checking of a single contract without any relation to other contracts with
kdb check. We implemented checks for a well formed, correct and full contract.

These checks were useful during development. When we forgot a clause, we immediately got feed-
back that something was missing without the need to actually try to mount the plugin. The same was true
when we forgot to export a symbol, which occurred quite frequently.

We found out that these checks were especially valuable when we introduced new clauses. With the
checker tool for validating a single contract, it was possible with surprising facility to find the plugins that
were not up to date or had obvious problems in the contract.

We conclude that checking single contracts can be useful during development of a plugin.

5.4.2 Automation

Currently kdb mount works in an interactive way. The user can decide which plugins should be added.
The algorithm has some automatism to find out where the plugin should be placed. We will evaluate how
well this works.

In Section 5.1 on page 83, we described many combinations we used to add plugins. For all combi-
nations, the algorithm automatically found a way to insert the plugins in the correct place. Currently the
algorithm, however, has some limitations.

For example, we inserted the type plugin. Afterwards we tried to insert the struct plugin. The algo-
rithm does not know that these two plugins just need to be reversed in order to fulfil the contract. Instead
it will output that an ordering validation happened. The user needs to correct the problem by providing
the plugins the other way round.

To sum up, the current contract checker gracefully rejects all non validating contracts. In some situ-
ations, however, the user needs to manually fix the problem, because the contract checker does not have
an automatic solution.

96 CHAPTER 5. EVALUATION

5.4.3 Limits of Contracts

Contracts can be valuable in a specific domain. It is no problem to describe that a specific encoding is
required, in which order it is needed, and if it needs to be reversed or not.

But the power of contracts is soon exceeded when we try to express general statements out of the
context of configuration. Fortunately, such statements were not needed for Elektra. The existing contracts
describe well what changes are applied to a KeySet object – the main task of plugins in Elektra.

We also learned that repairing the data structure so that conditions are met is far more often possible
than initially supposed. Only configuration not conforming to a given type will yield a run time error to
the application. Problems with incorrect encoding and invalid characters can be hidden from the user.
The user currently will, however, experience some differences in which metadata can be stored in a key
database.

CHAPTER 6
Related and Future Work

6.1 Related Work

6.1.1 Pluggable Types

Pluggable types[32, 13, 3] have emerged recently as a field of research and describe how type systems can
be optional. A pluggable type checker facilitates flexible checks that can be tailored towards the user’s
needs. Pluggable type checkers available today often extend an existing type system of a programming
language with some attributes[32]. Instead, Elektra does not have a built-in type system.

Type annotations[15] express pluggable types in programming languages, but the syntax does not fit
for key databases. Elektra uses metadata instead of type annotations.

CORBA Types as specified in IDL[43, 14] provide a full set of types with appropriate mappings to
many programming languages. Elektra makes use of this ecosystem and has support for the basic CORBA
types. The mappings to variables of programming languages are used inside the type checker plugin.

6.1.2 Error Handling

When errors occur, a decision must be made if the plugin is important enough to stop the request com-
pletely or to go on with the other succeeding backends. The Pluggable Authentication Modules, also
known as PAM[37], have developed a method to decide that well. PAM uses the three control flags
required, optional and sufficient for that. Elektra does not support control flags. Instead, the
position of the plugin defines the semantics on how to proceed. Plugins up to the commit plugin are
required and later plugins are optional. The control flag sufficient would make sense when
support for multiple storage plugins arises.

97

98 CHAPTER 6. RELATED AND FUTURE WORK

6.1.3 Contracts

The plugins in modular backends need to fulfil contracts[25, 17] in order to work together correctly.
Research on how to specify constraints in object-oriented database systems exists[18].

Refinement and Inclusion

The behavior of a plugin can be specialised and extended through contract refinement and a contract
inclusion mechanism[21]. They allow us to create new contracts using previously defined contracts.
So the contract language can be viewed as a plugin interconnection language. No such mechanism is
currently implemented in Elektra.

Openness

Contrary to the black box approach proposed in [4], we believe that the availability of source code is
needed to adopt good practices. For example, GStreamer separates its plugins into ”good”, ”bad” and
”ugly” plugins to appreciate the code and the licence. Only with source code and the right to copy and
modify it, is it possible to develop similar plugins by starting with another plugin as a template. With that
technique, writing of boiler plate code can be avoided. If programmers see that some plugins have the
same code, these plugins can be refactored. A too restrictive licence prevents such actions.

We believe that the possession model is of rather limited use for Elektra because the adaption of
plugins for specific use cases is rather the rule than the exception. We assume that many specific plugins
will be delivered with the respective software.

6.2 Future Work

6.2.1 Core

OWNER in Elektra’s terminology is represented as metadata of a Key. It describes from which user’s
home directory the Key was read. The metakey does not exist when the owner equals the current user.

The administrator might want to copy keys between different users. This is currently not possible
because the resolver plugin always resolves for the current user and Split is not aware of the owner.

The problem does not affect users, because they should not access configuration of other users. Ad-
ministrators can circumvent this problem by exporting the configuration from one user and importing it
to another.

The owner concept is deeply integrated into Elektra’s way how to handle key names and many docu-
ments show how to use it. So it is considered to be implemented again in later versions.

6.2. FUTURE WORK 99

6.2.2 Plugins

Changing Features at Run Time

Plugins, that take care of character escaping and encoding, are needed so that limited storage plugins
work properly. Removing them at run time is not a good idea. But other plugins that provide validation,
notification and logging may be turned off. This could be done with information passed to the respective
plugin.

Another solution works completely without the cooperation of plugins, by removing the plugin from
the chain of execution entirely. For example, if a notification daemon crashes, the affected plugins could
be removed until the service is up again.

We need to handle different situations for plugins. Some plugins are not allowed to be removed
because they are required. Some must stay because the administrator forces a specific policy. Other
plugins, however, can be removed.

Multiple Storage

From high-availability systems a challenging requirement arises. How is it possible to make configuration
storage redundant?

To achieve that, every backend needs to write out configuration multiple times. Such backends will
achieve a live-backup for configuration. The usage of different storage plugins writing to different ma-
chines even increases the availability of the configuration.

To be more failure tolerant, we also have to improve the reading of configuration. Instead of stopping
when the first storage plugin yields an error, the next one should be tried instead. We need a strict policy
to ensure that these storage plugins always set an error if something goes wrong.

6.2.3 Transactions using Global Plugins

We will see in the following examples that some tasks in kdbSet() have to happen respectively before,
or after any other event occurs. A way to achieve this is by a special backend. The advantage of this
approach is that plugins can also be reused for these tasks. These plugins will be referred to as GLOBAL

PLUGINS in this section.

Atomic Notification

Until now, each backend has its own notification plugin. This means, that for every backend that commits,
the applications will be notified. Listeners to these events, however, want to know when every backend
during a kdbSet() transaction is settled. A global plugin can notify that a sequence of events is finished.
Only then is it the time for other programs to update their configuration.

100 CHAPTER 6. RELATED AND FUTURE WORK

Journalling

When a program or computer crashes, committing may abort unexpectedly. If some backends have
already committed, while others have not, an unsatisfying situation arises. The premise that kdbSet()
is executed fully or not is broken. But the program does not exist anymore and no further actions are
possible. Journalling provides a way to fix the problem when the next kdbSet() by another process is
executed.

It works by writing a journal log instead of directly moving files. Once the log is completely written
and flushed to disk, a global plugin does the actual renaming of the files. When the program crashes in
the first phase while writing the log, this is no problem because no configuration file has been changed up
to that point. The unfinished log file has to be discarded. On the other hand, the program can replay the
finished journal whenever the applications aborts at a later time. No intermediate state without knowing
what needs to be done will occur.

Using git for configuration

Since the availability of efficient and decentralised revision control systems, it became usual to utilise
them for configuration files. Not only that unintended changes can be reverted, but also the history of
changes can be displayed and checked out. Moreover, different branches can be used to switch between
different settings.

Thus Elektra works with text configuration files, git can of course be used even without the knowledge
of Elektra. But Elektra can help the user by automatically adding all processed files to the index and
commit them after a successful kdbSet().

Even better, Elektra can write git object files on its own and do a git-checkout after this has been
done. This would yield atomic properties like journalling. Additionally, the advantage is that it leaves the
option to rollback, even on finished commits. Using git, instead of inventing a new type of objects files,
allows the usage of the available and optimised git tools.

6.2.4 Concurrency

kdbDup

Elektra can be used in a thread-safe way by instantiating Elektra’s data structures per thread. That means
all functions in Elektra are reentrant. Elektra currently does not support thread-specific locking for its
data structures.

To achieve higher performance for multithreaded applications, fast duplications of KDB are needed. If
implemented correctly, bootstrapping Elektra multiple times could be avoided.

Concurrent Processing

The plugins must be processed in the correct sequence because they change keys and have side effects.
The processing of backends is however completely independent up to, and after, the commit step. Each of

6.2. FUTURE WORK 101

these two parts can be implemented concurrently. If any backend fails before commit, special care must
be taken so that no backend commits its changes. The concurrent processing of the plugins is possible for
both kdbGet() and kdbSet().

6.2.5 Discarded Ideas

These ideas were discarded on purpose. They are likely to introduce unforeseeable problems and the
problems can also be solved in another way. More research is needed before they can be implemented.

Handling Multiple Files per Backend

We decided not to implement any other situation than one file per backend. On the one hand, it is simple
to mount multiple backends if more files are needed.

On the other hand, the complexity and inefficiency can increase drastically. Storage plugins would
need KeySet operations like difference to deduce which files to remove or create. File name resolving
would not be easy anymore. The previously trivial test if an update is needed or a conflict occurred may
become slow depending on the number of files involved.

For example, KDE has many configuration files in the path ~/.kde/share/config. In a KDE
installation with many programs it can be up to one thousand individual files.

We decided that such an approach can be implemented if the current solution is known to be unable
to handle it. More tests are needed to decide if such setups work in a satisfying manner with the current
equipment. The disadvantage of the current situation is that new files are not tracked automatically. But
this can be achieved by install scripts that automatically mount the files necessary for the configuration.
To sum up, currently the correct way to insert additional files into the key hierarchy is to mount them.

User Mount Point Configuration

The mount point configuration resides only below system/elektra/mountpoints. We decided against
providing user/elektra/mountpoints because of security concerns.

It must be assured that the user only mounts backends where he or she is allowed to do so. But these
conditions might change. As mentioned for kiosk in Section 2.3.3 on page 28, the administrator may
want to enforce some user configuration. But this would be pointless if the user could circumvent it.

Another open item is how, and if, user’s own plugins can be used. Plugins provided by the user open
a door for code injection. These problems have to be discussed and clarified before any attempts in this
direction are made.

Distributing Configuration

Elektra currently does not provide any distribution or decentralised features because it does not have any
plugins communicating with a configuration daemon. These features are supposed to be on a higher
level and not in backend code. Instead, software like Cfengine[12, 11] and Puppet can use Elektra to
change local configuration[10]. Augeas[28] was written specifically for that purpose. It is, however,

102 CHAPTER 6. RELATED AND FUTURE WORK

not intended to be a configuration library for applications. Its bidirectional approach, on how to read
and write configuration using lenses[8], is interesting. Unfortunately, it is not capable of mapping more
complicated configuration files, but actually it would be an interesting storage plugin for Elektra because
it supports many simple configuration files.

CHAPTER 7
Conclusion

After an introduction describing what configuration is and what features modern applications expect, we
introduced Elektra and showed how it tried to solve these problems and why it stagnated. Multiple plugins
together in one of Elektra’s backends solved all these problems well with the benefit that plugins were
reusable. These plugins could be built together as the requirements presuppose. The additional flexibility
and the separation of concerns comes at the price that more run time errors are likely. Therefore, we
introduced contracts so that plugins can express the input they require and the output they offer.

We looked at many applications such as encoding, converting, escaping and hiding that can now be
orchestrated within a backend safely because of contracts. We also learned that resolver plugins were in
charge of the operating system-dependent problems such as determining the path to the configuration file,
detecting conflicts and checking for updates.

The counterpart in functionality is the storage plugin, in contrast, characterised by being portable. It
finishes the job the resolver plugin is not competent in: reading and writing to the configuration storage.
Another duality is represented by the pluggable type checker consisting of two parts. The first part creates
the information which checks have to be done. And the second part actually performs the investigation.

We introduced key database semantics which no longer try to resemble file system semantics, but are
designed to hold configuration in simple key value pairs. To still denote specialities of configuration files,
allow communication between plugins and let the user extend semantics or behaviour of the key database,
we proclaimed metadata.

We learned a lot about the implementation: the data structures building the foundation and the algo-
rithm orchestrating the plugins. We investigated a way how to guarantee Elektra’s semantics and how to
build up the internals that make sure that only keys from the correct backends are aggregated.

A detailed and comprehensive explanation of error handling and algorithms followed because they
glue together all other parts. Afterwards, we evaluated what Elektra is capable of doing and where the
limits are. In the related and future work, we enumerated the tasks yet to be done, hoping that researchers
will try to answer these questions.

103

Bibliography

[1] A. Alkalay. Linux registry. Talk at KDE Community World Summit, August 2004.

[2] C. Amsüss. private conversation.

[3] C. Andreae, J. Noble, S. Markstrum, and T. Millstein. A framework for implementing pluggable
type systems. ACM SIGPLAN Notices, 41(10):74, 2006.

[4] F. Bachmann, L. Bass, C. Buhrman, S. Cornella-Dorda, F. Long, J. Robert, R. Seacord, and K. Wall-
nau. Volume II: Technical concepts of component-based software engineering. Technical report,
2000.

[5] Waldo Bastian. XDG Base Directory Specification. http://standards.freedesktop.

org/basedir-spec/basedir-spec-latest.html, June 2010.

[6] Oren Ben-Kiki, Clark Evans, and Brian Ingerson. Yaml ain’t markup language (yamlTM). http:
//www.yaml.org/spec/, October 2009.

[7] J. Bloch. How to design a good API and why it matters. In Companion to the 21st ACM SIGPLAN

symposium on Object-oriented programming systems, languages, and applications, page 507. ACM,
2006.

[8] Aaron Bohannon, J. Nathan Foster, Benjamin C. Pierce, Alexandre Pilkiewicz, and Alan Schmitt.
Boomerang: resourceful lenses for string data. In POPL ’08: Proceedings of the 35th annual

ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages 407–419,
New York, NY, USA, 2008. ACM.

[9] EB Bruce and WG Daniel. Metadata standards and Metadata Registries: An Overview. In The

International Conference on Establishment Surveys II. Buffalo. Citeseer, 2000.

[10] M. Burgess. On the theory of system administration. Science of Computer Programming, 49(1-
3):1–46, 2003.

[11] M. Burgess and A. Couch. Autonomic computing approximated by fixed-point promises. In Pro-

ceedings of the First IEEE International Workshop on Modeling Autonomic Communication Envi-

ronments (MACE), Multicon Verlag, pages 197–222, 2006.

105

http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html
http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html
http://www.yaml.org/spec/
http://www.yaml.org/spec/

106 BIBLIOGRAPHY

[12] M. Burgess et al. Cfengine: a site configuration engine. USENIX Computing systems, 8(3):309–402,
1995.

[13] B. Chin, D. Marino, S. Markstrum, and T. Millstein. Enforcing and validating user-defined pro-
gramming disciplines. In Proceedings of the 7th ACM SIGPLAN-SIGSOFT workshop on Program

analysis for software tools and engineering, page 86. ACM, 2007.

[14] M. Ebner, A. Yin, and M. Li. Definition and Utilisation of OMG IDL to TTCN-3 Mappings. In
Testing of communicating systems XIV: application to Internet technologies and services: IFIP

TC6/WG6. 1 Fourteenth International Conference on Testing of Communicating Systems (TestCom

2002), March 19-22, 2002, Berlin, Germany, page 443. Springer Netherlands, 2002.

[15] Michael D. Ernst. Type Annotations specification (JSR 308). http://types.cs.

washington.edu/jsr308/, September 2008.

[16] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable Object-

Oriented Design. Professional Computing Series. Addison Wesley, 1995.

[17] C. Garion and L. van der Torre. Design By Contract. Coordination, organization, institutions and

norms in agent systems I, July 2005.

[18] A. Geppert and K.R. Dittrich. Specification and implementation of consistency constraints in object-
oriented database systems: Applying programming-by-contract. In Proceedings. GI-Conference

BTW, 1994.

[19] P. Gühring. private conversation.

[20] Carsten Haitzler. Eet library documentation. http://docs.enlightenment.org/api/

eet/html/, 2008.

[21] I.M. Holland. Specifying reusable components using contracts. In ECOOP’92 European Confer-

ence on Object-Oriented Programming, page 287. Springer, 1992.

[22] A. Hunt and D. Thomas. The pragmatic programmer: from journeyman to master. Addison-Wesley
Longman Publishing Co., Inc. Boston, MA, USA, 2000.

[23] S. Josefsson. The base16, base32, and base64 data encodings, 2003.

[24] M.F. Krafft. The Debian system: concepts and techniques. Open Source Press, 2005.

[25] M. Lackner, A. Krall, and F. Puntigam. Supporting design by contract in Java. Journal of Object

Technology, 1(3):57–76.

[26] Simon Law and Patrick Patterson. UniConf, GConf, KConfig, D-BUS, Elektra, oh my! http:

//alumnit.ca/wiki/attachments/uniconf_universal.pdf, 2005. Desktop De-
velopers’ Conference.

http://types.cs.washington.edu/jsr308/
http://types.cs.washington.edu/jsr308/
http://docs.enlightenment.org/api/eet/html/
http://docs.enlightenment.org/api/eet/html/
http://alumnit.ca/wiki/attachments/uniconf_universal.pdf
http://alumnit.ca/wiki/attachments/uniconf_universal.pdf

BIBLIOGRAPHY 107

[27] R. Love. Get on the D-BUS. Linux Journal, 2005(130):3, 2005.

[28] David Lutterkort. Augeas - a configuration API. http://www.kernel.org/doc/ols/

2008/ols2008v2-pages-47-56.pdf, 2008.

[29] Wilson Mar. Escape Characters. http://www.wilsonmar.com/1eschars.htm, August
2010.

[30] MD McIlroy, EN Pinson, and BA Tague. Unix time-sharing system forward. The Bell system

technical journal, 57(6 part 2):1902, 1978.

[31] B. Meyer. Applying design by contract. Computer, 25(10):51, 1992.

[32] Matthew M. Papi, Mahmood Ali, Telmo Luis Correa Jr., Jeff H. Perkins, and Michael D. Ernst.
Practical pluggable types for Java. In ISSTA 2008, Proceedings of the 2008 International Symposium

on Software Testing and Analysis, pages 201–212, Seattle, WA, USA, July 2008.

[33] B. Peirce. Linear associative algebra. Van Nostrand, 1882.

[34] Avery Pennarun. Uniconf. http://alumnit.ca/wiki/attachments/uniconf.pdf,
May 2003.

[35] Markus Raab and Patrick Sabin. Implementation of Multiple Key Databases for Shared Configura-
tion. ftp://www.markus-raab.org/elektra.pdf, March 2008.

[36] D. Robbins. Common threads: Advanced filesystem implementer’s guide, Part 1. IBM Developer

Works, http://www.ibm.com/developerworks/library/l-fs.html, 2001.

[37] V. Samar. Unified login with pluggable authentication modules (PAM). In Proceedings of the 3rd

ACM conference on Computer and communications security, page 10. ACM, 1996.

[38] J. Siméon and P. Wadler. The essence of XML. ACM SIGPLAN Notices, 38(1):1–13, 2003.

[39] T.A. Standish. Data structures, algorithms and software principles in C. Addison Wesley, 1995.

[40] B. Stroustrup. Exception safety: concepts and techniques. Advances in exception handling tech-

niques, pages 60–76, 2001.

[41] Bjarne Stroustrup. The design and evolution of C++. ACM Press/Addison-Wesley Publishing Co.
New York, NY, USA, 1995.

[42] J. Weidendorfer, M. Kowarschik, and C. Trinitis. A tool suite for simulation based analysis of
memory access behavior. Computational Science-ICCS 2004, pages 440–447, 2004.

[43] Girish Welling and Maximilian Ott. Customizing idl mappings and orb protocols. In Middleware

’00: IFIP/ACM International Conference on Distributed systems platforms, pages 396–414, Secau-
cus, NJ, USA, 2000. Springer-Verlag New York, Inc.

http://www.kernel.org/doc/ols/2008/ols2008v2-pages-47-56.pdf
http://www.kernel.org/doc/ols/2008/ols2008v2-pages-47-56.pdf
http://www.wilsonmar.com/1eschars.htm
http://alumnit.ca/wiki/attachments/uniconf.pdf
ftp://www.markus-raab.org/elektra.pdf

108 BIBLIOGRAPHY

[44] Clifford Wolf. The craft of api design. http://www.clifford.at/papers/2008/

apidesign/, September 2008.

[45] C.P. Wright, R. Spillane, G. Sivathanu, and E. Zadok. Extending ACID semantics to the file system.
ACM Transactions on Storage (TOS), 3(2):4, 2007.

http://www.clifford.at/papers/2008/apidesign/
http://www.clifford.at/papers/2008/apidesign/

Index

ADT, 40
API, 13, 33

backend, 3
base64, 66
below, 6
binary search, 44, 45
bootstrapping, 35, 52, 56, 100
build system, 17
build tool, 11

C99, 36
Callgrind, 93
capabilities, 14
cascading, 6
cascading mount point, 39
ccode plugin, 64, 67
clauses, 20, 30
CMake, 11
code plugin, 66, 84
configuration, 1
configuration library, 8
configuration storage, 1
conflict, 59
consistency

no, 44
strict, 43
weak, 44

contract, 20
contract checker, 20, 38
contracts, 22

current directories, 14
cursor

external, 45
internal, 44

D-Bus, 27
data structure

AVL tree, 40
hash, 40

dead lock, 40
Debconf, 9
deep duplication, 43, 58
default backend, 35, 52
depth, 44
development time, 18
dump plugin, 71

Elektra, 2
elektrify, 2, 23
error, 46
error code, 47, 58
error information, 47
error message, 47
error plugin, 62
escape character, 66
event-driven programming, 27
exception converter, 51
exception safety, 51
exports, 21

faulty state, 47

109

110 INDEX

file system, 7
filesys, 13
filter plugin, 66
forensic logging, 28
function

elektraModulesClose(), 37
elektraModulesInit(), 37
elektraModulesLoad(), 37
kdbOpen(), 35
keyCopyAllMeta(), 42
keyGetMeta(), 42
keyRel(), 6
keySetMeta(), 42
ksCut(), 35
ksLookupByName(), 45, 53
ksLookupRE(), 79

git, 12, 100
glob expression, 79
glob plugin, 79
global key database, 1
global plugins, 99
goal of this thesis, 10
guarantee, 57

basic, 51
strong, 51

hidden plugin, 62
hole, 14
hosts plugin, 73, 75

iconv, 16
iconv plugin, 68
idempotent, 53
inetd, 3
inseparable, 41
internal cursor, 59
italics, 2
iterator

external, 44
internal, 45

JSON, 9

KDB, 5, 100
Key, 4
key database, 1, 9
KeySet, 4
kiosk mode, 28

libelektratools, 24
libhelper, 15
libloader, 37
localisation, 74

Memcheck, 34
metadata, 18, 22
metadata storage, 72
metakey, 18
metaname, 18
metavalue, 18
methodology

agile, 11
test-driven, 11

module, 36
module backend, 64
mount point configuration, 38, 52
mount time, 20
mounting, 7
multiple plugins, 17, 22

network plugin, 79
ni plugin, 84
null plugin, 69

ordering, 73
owner, 98

PAM, 97
path resolution, 16
pluggable checker, 77
pluggable type checker, 87
plugin configuration, 38, 63
plugin factory, 36

INDEX 111

pop, 5, 53
POSIX, 36
postconditions, 22
preconditions, 22
programming language, 48
provider, 20
purge software, 6, 24
purpose of contracts, 82

reduce, 66
remove software, 24
reproducibility, 12
resolver plugin, 26
revision control system, 12
root directory, 14
round-tripping, 74, 88

property, 10
run time, 20

serialisation, 70
session bus, 27
simpleini plugin, 69, 72
single array, 29
Small Caps, 2
Split, 46
stacking, 31
storage plugin, 17, 70
streaming, 70
strong consistency, 81
struct plugin, 81
structure checker, 81
subkey, 6
sync flag, 36, 56, 58
syncbits, 46, 55
syscall, 54, 57
system configuration, 6, 7
system-wide bus, 27

tcl plugin, 75
template parameter, 82
Trie, 45

type checker plugin, 78
type checking

two-phase, 77
types, 72

Uniconf, 8
moniker string, 9

unique key, 6
universal plugins, 25
user configuration, 6, 7
UTF-8, 16, 68

Valgrind, 34, 93
validation plugin, 78
version plugin, 37, 62

warning information, 47
warning message, 47

XDG, 9
xinetd, 3
XML, 9

import/export, 24
representation, 76

xmltool plugin, 76

YAML, 9

List of Figures

1.1 Elektra’s Logo, thanks to Studio-HB . 2
1.2 Elektra as Abstraction Layer, thanks to Avi Alkalay[1] . 3
1.3 Three Classes, thanks to Avi Alkalay[1] . 4
1.4 Flow of KeySet . 5
1.5 Mounting in Elektra . 7

2.1 Introduction of Multiple Plugins . 18
2.2 Metakeys . 19
2.3 Elektrify Software, thanks to Avi Alkalay[1] . 23
2.4 Ordering using Stacking . 29
2.5 Ordering using Separated Lists . 30
2.6 Ordering with Error List . 30

3.1 Architecture . 37
3.2 Exception Flow . 50
3.3 kdbGet() Algorithm . 55
3.4 kdbSet() Algorithm . 58

4.1 Overview of Plugins . 61

5.1 Callgraph of the benchmark program . 94

112

List of Tables

2.1 Placement of Plugins . 31

4.1 Ccode escape characters, thanks to Wilson Mar[29] . 67

113

List of Listings

1.1 Examples of valid system key names . 6
1.2 Examples of valid user key names . 6
3.1 Interface of Module System . 37
3.2 Example for a mount point configuration . 38
3.3 Interface of metadata . 42
3.4 Interface for iterating metadata . 42
3.5 Interface for copying metadata . 42
3.6 Exception safety for plugins . 51
4.1 Exporting of Contract . 64
4.2 Dump Example . 71
4.3 INI Example . 72
4.4 Hosts Example . 73
4.5 TCL Lists Example . 75
4.6 Elektra’s traditional XML Representation . 76
4.7 Proposal for other XML Representation . 76
4.8 Contract for Glob . 80
4.9 Contract of fstab . 81
5.1 Grammar for TCL Lists . 85
5.2 Benchmark program . 91

114

	Contents
	1 Introduction
	1.1 Preliminaries
	1.1.1 Definitions
	1.1.2 Conventions

	1.2 Elektra
	1.2.1 Motivation
	1.2.2 Classes
	1.2.3 Concepts

	1.3 Work Related to Elektra
	1.3.1 Configuration Libraries
	1.3.2 Other Projects
	1.3.3 Key Databases

	1.4 Goal of this Thesis
	1.5 Methodology
	1.5.1 Development Methods
	1.5.2 Tools
	1.5.3 Benchmark Methods

	2 Approach
	2.1 Problem
	2.1.1 File System Semantics
	2.1.2 Missing Modularity
	2.1.3 Missing Features

	2.2 New Approach
	2.2.1 Metadata
	2.2.2 Contracts
	2.2.3 Consequences

	2.3 Choices
	2.3.1 Storage Plugins
	2.3.2 Resolver Plugins
	2.3.3 Cross-Cutting Concerns
	2.3.4 Ordering

	3 Implementation
	3.1 Architecture
	3.1.1 API
	3.1.2 Concepts
	3.1.3 Modules
	3.1.4 Mount Point Configuration

	3.2 Data Structures
	3.2.1 Introduction
	3.2.2 Metadata
	3.2.3 KeySet
	3.2.4 Trie vs. Split

	3.3 Error Handling
	3.3.1 Terminology
	3.3.2 Error Information
	3.3.3 Exceptions

	3.4 Algorithm
	3.4.1 Introduction
	3.4.2 kdbGet
	3.4.3 kdbSet

	4 Plugins
	4.1 Introduction
	4.1.1 Interface
	4.1.2 Contracts

	4.2 Filter
	4.2.1 Encoding
	4.2.2 Reversibility
	4.2.3 Null values

	4.3 Storage
	4.3.1 Dump Storage
	4.3.2 Limited Storage
	4.3.3 Ordering of Keys
	4.3.4 Other Representations

	4.4 Pluggable Checker
	4.4.1 Introduction
	4.4.2 Checker Plugins
	4.4.3 Apply Metadata

	5 Evaluation
	5.1 Development Time
	5.1.1 On Using Configuration Libraries
	5.1.2 On Using Grammars

	5.2 Modularity
	5.2.1 Separation of Non-Portable Code
	5.2.2 Pluggable Types
	5.2.3 Cross-Cutting Concerns
	5.2.4 Conclusion

	5.3 Run Time
	5.3.1 Setup
	5.3.2 Size of the Library
	5.3.3 Dependences of the Library
	5.3.4 Benchmarks
	5.3.5 Conclusion

	5.4 Contracts
	5.4.1 Contracts Checker
	5.4.2 Automation
	5.4.3 Limits of Contracts

	6 Related and Future Work
	6.1 Related Work
	6.1.1 Pluggable Types
	6.1.2 Error Handling
	6.1.3 Contracts

	6.2 Future Work
	6.2.1 Core
	6.2.2 Plugins
	6.2.3 Transactions using Global Plugins
	6.2.4 Concurrency
	6.2.5 Discarded Ideas

	7 Conclusion
	Bibliography
	Index
	List of Figures
	List of Tables
	List of Listings

