
TU2015-06-12 Safe Management of Software Configuration1

Safe Management of Software
Configuration

Markus Raab

Vienna University of Technology
Institute of Computer Languages
markus.raab@complang.tuwien.ac.at
Supervisor: Franz Puntigam

◦ Introduction

◦ Elektra

◦ Validation

◦ Results



TU2015-06-12 Introduction2

Configurability

software with parameter values specified in configuration files is

1. flexible

2. adaptable

3. customizable

4. deployable

5. applicable

so there is hardly any software not being configurable



TU2015-06-12 Introduction3

But

misconfigurations are one of today’s major causes of system failures!

faulty configuration files:

• trigger crashes

• make services unavailable

• create unintended behaviour

• lead to frustrating process of debugging configuration



TU2015-06-12 Introduction4

State of the Art

1. specification (schema) used for configuration files

2. (typed) variables used in programs

problem: worlds are disconnected

faults in gap-code between:

• unexpected fall backs

• wrong conversations

• improper use of values

• inconsistent or missing checks



TU2015-06-12 Introduction5

Solution

define configuration specification language

all other artifacts are generated from it, including

1. program variables

2. validation checker

3. documentation



TU2015-06-12 Introduction6

Goal and Question

Improve configuring software by a configuration specification framework such

that it is easy to use in order to make configuring software more safe.

What kind of influence has the use of our configuration specification

framework, i.e. Elektra, on software?

it is a large topic to cover

concentrate on two subquestions

but only a holistic approach can really improve the situation

(neither type systems nor configuration validation alone)

ideally, the same type is used from configuration file to API usage



TU2015-06-12 Elektra7

Elektra



TU2015-06-12 Elektra8

Architecture

generate

key

database

conf. data

specification type safe
access code

genelektra

ac
ce
ss

program
code

uses
plugins

tooling

access

access

load, store

and check

is part of

libelektra

Boxes represent software artifacts. The bold boxes show artifacts developers

need to implement.



TU2015-06-12 Elektra9

Global key database

similar to a filesystem

applications fetch keys on startup

modular implementation with many plugins:

1. parsing configuration files

2. cross-cutting concerns, e.g. logging and notification

3. run-time checkers



TU2015-06-12 Elektra10

Specification

1. Check if the specification is consistently typed and has no conflicting

constraints.

2. Compile a minimal list of plugins that can perform the run-time checks

and work together.

3. Check if the specification has a safe upgrade path from its previous

version.



TU2015-06-12 Validation11

Validation



TU2015-06-12 Validation12

Subquestion 1

Which properties in the specification have the strongest influence on avoiding

software failures caused by invalid configuration files?



TU2015-06-12 Validation13

Possible properties

• structure validation with CORBA data types

• more powerful data types, e.g. units of measurement,

• novel ways to define subtyping,

• types inference using unification,

• global constraints, e.g. using Gecode, Coinor and Z3,

• schemas, e.g. Relax NG Schema and XSD,

• Data Format Description Languages,

• configuration value deduction and

• any combination of the approaches above.



TU2015-06-12 Validation14

Methodology

1. check literature for specification configuration languages

2. find out which kinds of typical and sophisticated configuration errors

3. model such configuration errors.

4. implement run-time checker (property in specification)

5. compare the expressiveness

6. evaluate usability of the specification (managing+SE integration)



TU2015-06-12 Validation15

Subquestion 2

How does the specification interact during software engineering processes with

software architectures, software evolution, and software quality?



TU2015-06-12 Validation16

Methodology

1. user study with configuration related task

2. randomly choose two groups A and B

(a) Group A solves the task by using a specification

(b) Group B solves the task without a specification

3. snapshots of the work (check for robustness)

4. questionnaire on a Likert scale.



TU2015-06-12 Results17

Results



TU2015-06-12 Results18

Results by now

1. type safe frontend

2. efficient

3. supports multi-core

4. context aware



TU2015-06-12 Results19

Expected Results

1. configuration specification improves software quality

2. specified configuration is safer to manage



TU2015-06-12 Results20

Threads of validity

The participants of the study are a critical factor:

1. biased selection

2. not enough experience

3. unfair advantages

4. not blind

5. number too small



TU2015-06-12 Results21

Limitations

no generalization beyond configuration

no specific software domain (too generic?)

specification needs to be done manually

compromise between expressibility and usability

new problems: specification might be wrong (but consistent)



TU2015-06-12 Results22

Related Work

apache commons configuration

pluggable types

ConfErr

RangeFixes

AutoBash

Spex

software product lines



TU2015-06-12 Results23

Thank you for your attention

Questions?

Feedback!


