
A universal storage plugin for
Elektra

BACHELOR’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science

in

Software & Information Engineering

by

Felix Berlakovich
Registration Number 0929233

to the Faculty of Informatics

at the Vienna University of Technology

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Franz Puntigam
Assistance: Univ.Ass. Dipl.-Ing. Markus Raab

Vienna, 1st March, 2016
Felix Berlakovich Franz Puntigam

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Felix Berlakovich
Edelhofgasse 34/11
1180 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 1. März 2016
Felix Berlakovich

iii

Abstract

On today’s computer systems, configuration files are omnipresent. Administrators, as
well as developers, are confronted with an ever growing zoo of different configuration file
formats. Elektra, a multi-platform configuration management library, aims to provide
a common view of all these configurations. However, to achieve this goal Elektra must
be able to read and write the configuration files. At the time of this writing, Elektra
supports only 9 different configuration file formats because each configuration file format
needs it’s own storage plugin. In contrast, the goal of this thesis is to create a single
general storage plugin that supports dozens of configuration file formats. We show how
Augeas, along with the many configuration file formats it supports, can be integrated
in Elektra as a single storage plugin. As a result, Elektra now supports more than
100 different configuration file formats. We compare the new storage plugin to existing
storage plugins and discuss important features of Elektra storage plugins in general.
Finally, we benchmark the new plugin against an existing Elektra storage plugin. We
show that, in contrast to the existing plugin, the runtime of the new plugin quickly
increases with larger configuration files. We conclude that the new storage plugin is well
suited to integrate new configuration file formats within Elektra, but existing storage
plugins often can provide better abstraction and better runtime performance.

v

Contents

Abstract v

1 Introduction 1
1.1 Problem Statement . 1
1.2 A More Detailed Look . 2
1.3 Goal of this Thesis . 3

2 Theoretical Background 5
2.1 Introduction . 5
2.2 Solving the View-update Problem . 6
2.3 Bidirectional Transformations . 8
2.4 Bidirectional Programming with Lenses 8

3 The Augeas Storage Backend 11
3.1 The Augeas Library . 11
3.2 Integrating Augeas with Elektra . 16

4 Evaluation 19
4.1 Feature Comparison . 19
4.2 Performance Considerations . 29

5 Conclusion and Future Work 35

Bibliography 37

vii

CHAPTER 1
Introduction

1.1 Problem Statement
Most applications need some kind of configuration. That is, a set of user preferences
or application parameters that control the applications runtime behaviour. As the
number of applications on a system increases so does the work required to manage their
configurations. This is a problem because operating systems today host hundreds of
different configurations. Many requirements arise, including but not limited to:

• providing a single view to all application configurations on a system

• cascading configurations, i.e. stacking multiple configurations

• reacting to configuration changes, e.g. by logging or notifying other applications

• validating configuration changes, i.e. prevent semantically or syntactically incorrect
configurations

Different solutions have been proposed to fulfill these requirements. Most of these
solutions provide lots of features, but fail to take existing configurations into account. For
them to work an application must be written with the configuration library already in
mind. Examples for such solutions are dconf, the Windows R© Registry and KDEs kconfig.
For example, the Windows R© Registry fails to integrate applications that currently use
the INI file format. Applications using the INI format cannot be configured via the
Windows R© Registry.

This is where Elektra steps in. Elektra is a portable library for reading and writing
application configurations in a uniform way. Its modular design allows the integration

1

1. Introduction

of features like logging of changes or preventing corrupt configurations via validation.
Elektra allows to reuse existing configurations by integrating them with a custom plugin
for each configuration file format. However, currently there are few plugins for different
file formats available. Before this work, plugins for 9 different configuration file formats
existed.

In contrast to that, supporting many different configuration file formats is a strength of
Augeas. Augeas is also a library for reading and writing configuration files, but unlike
Elektra it focuses mainly on parsing. This means that Augeas does not handle any
problem apart from parsing configuration files and presenting them as a tree.

As a result we are left with two powerful libraries for dealing with configuration files,
but once again none of them is able to solve the full stack of requirements mentioned
before. Without support for more configuration file formats neither administrators nor
developers can benefit from the many useful features Elektra provides.

1.2 A More Detailed Look

1.2.1 Elektra

Elektra presents all application configurations in a hierarchical key database. The
database consists of Keys representing configuration directives and KeySets grouping
those Keys. An Elektra Key has a unique name and a value. For example, each entry of
an INI configuration file could be represented by an Elektra Key. All Keys occurring
in this configuration file are then grouped in a KeySet. Each Key may have so called
MetaKeys. MetaKeys can hold meta information about the Keys they are attached
to.

Elektra handles different configuration file formats by using backends. A backend is
built from a stack of plugins, where different plugins serve different duties. For example,
some of them filter or modify the configuration data passing by (e.g. by changing the
encoding). Others serve as storage plugins. Storage plugins are responsible for reading
from and writing to the actual configuration of the application. Different storage plugins
allow Elektra to reuse the configuration file formats that already exist. This is in contrast
to introducing yet another format and forcing application developers to adopt this new
format.

A common issue when implementing a new storage plugin is the implementation of a
parser for the configuration file. While an easy to use system interface exists for some
configurations (e.g. getmntent for fstab), for most configuration files a parser has to
be written by hand. Sometimes it might be possible to reuse existing parsing code of
the application. However, most of the time the parsing code is strongly coupled to the
application and therefore has to be reimplemented in the corresponding storage plugin.

2

1.3. Goal of this Thesis

As a result the parsing logic exists at least twice – once in the application itself and once
in Elektra.

Apart from reading the configuration file, it must be written back after modifications
have been made. For complex configurations this poses another challenge for the plugin
developer. Great care should be taken, not to mangle parts usually ignored by a
configuration file parser (e.g. comments or formatting). Otherwise information valuable
to the user may be lost. In addition, both translation directions must be coordinated
with each other. For example, data that has not been read in the first place cannot be
written back properly. This is where Augeas comes into play.

1.2.2 Augeas

Augeas aims to tackle the problem of providing an editable view with a concept called
lenses. Lenses are specifically designed to solve the issue of creating a view that can also
be modified. Augeas already ships with more than 150 lenses for different configuration file
formats. However, Augeas is not intended to solve any problem apart from configuration
file manipulation. As the author of Augeas states in „Augeas - a configuration API“ [6]:

AUGEAS tackles this problem in the simplest possible way and focuses solely
on the mechanics of modifying configuration files.

Unfortunately this means that many other issues related to configuration management
remain unsolved, when solely Augeas is used. For example, the previously mentioned
requirement of configuration change notifications remains unfulfilled. In particular
features like cascading need a higher abstraction over the underlying configuration file
than Augeas provides. Low abstraction means that details like platform specifics or the
location of the configuration file leak through to the application using the configuration
API. Most of the time these specifics are not useful or even hindering for applications
that just aim to read or manipulate their configuration. A detailed description of these
problems can be found in [16] and [18].

1.3 Goal of this Thesis

The goal of this thesis is to combine the benefits of Elektra and Augeas. While Elektra
fulfills the previously introduced requirements, Augeas ships with a large number of
lenses and therefore supports many different configuration file formats. The integration
will happen via a newly developed Elektra storage plugin. The plugin will make use
of the Augeas library and will be called the augeas plugin. Based on the plugin
implementation the following questions will be answered:

RQ1 Can the existing lenses of Augeas be reused unchanged with the augeas plugin?

3

1. Introduction

RQ2 Can the augeas plugin provide the same level of abstraction over the configuration
as existing Elektra plugins?

RQ3 How resource intensive is the use of the augeas plugin compared to existing Elektra
plugins?

4

CHAPTER 2
Theoretical Background

2.1 Introduction

The storage plugin implemented in the course of this work differs from existing storage
plugins mainly in the handling of the view-update problem. While existing implementa-
tions provide independent view and update procedures, the augeas plugin makes use of a
concept called bidirectional programming. In short, bidirectional programming provides
a way to describe the transformation of a concrete source to an abstract view, and from
a modified view back to the concrete source, in a single specification. Because the way
of dealing with this problem is a key element of storage plugins in Elektra, a short
introduction to the problem itself and possible solutions is given here. The view-update
problem states the following:

Definition (view-update problem). Suppose that s is some concrete source of data, v is
an abstract view of this data and q is a query from s to v such that v = q(s). Given an
update u on v that transforms v to v’, what is a possible translation of u that transform s
to s’ such that v’ = q(s’)? [14]

A visualisation of Definition 2.1 can be seen in Figure 2.1.

This problem originated in the database community and was studied intensively in the
context of relational databases, for example in [5, 7, 15]. Nonetheless, it reappears in
many other contexts such as data synchronisation [10], XML transformations [4, 19] and
configuration APIs. In the particular case of Augeas and Elektra the concrete source is a
configuration file and the abstract view is a tree1. After the tree was modified it must

1Strictly speaking the abstract view of Elektra is a KeySet consisting of Keys, but conceptually the
Keys represent a tree.

5

2. Theoretical Background

s q v

t u

s′ q v′

Figure 2.1: Visualisation of the view update problem, based on the figure in [14]

be converted back to a configuration file. The difference compared to databases is that
databases use the same format for original data source and views (i.e. relations in both
cases).

The translation of the update u can happen in two different ways. The first way is to
translate the update operations done on v to corresponding update operations on s. For
example, an insertion of a new Elektra Key could be translated to the insertion of a new
line in the corresponding configuration file.

The second possibility is to translate complete states. This means that the updated
source s′ is completely rebuilt on the basis of v′. All technologies presented in this
chapter apply the second approach. First, implementing state translation usually is
simpler than translating updates. Translating updates requires a formal description of
update operations on both sides and their correlation. As an example consider an Elektra
KeySet with newly inserted and deleted Keys. Simply writing a new file containing the
contents of the KeySet is simpler than calculating all the updates that must be done on
the old file. Calculating such a changeset is especially complex because updates to an
Elektra backend are represented by a new KeySet instead of a series of operations to
be performed. Interestingly this was not always the case. Version 0.7 of Elektra used
a combination of the first and the second approach. While most modifications were
handled by translating the complete state, deletions were handled differently. Deleted
Keys were still present in the updated KeySet, but marked for deletion. Storage plugins
had to make sure that the delete operation is correctly applied to the affected parts in
the configuration file.

2.2 Solving the View-update Problem

Solutions to the view-update problem can be categorised by the design of the transfor-
mation functions. The following sections will explain the different possibilities.

6

2.2. Solving the View-update Problem

2.2.1 Independent View and Update Procedures

Independent view and update procedures means that the function calculating the view
and the function calculating the update on the original source do not have a formal
correlation.

This approach is chosen by existing Elektra storage plugins. Transforming a configuration
file into an Elektra tree and converting the modified tree back to the file are two
independent actions. As an example consider the ini storage plugin. The view function
q corresponds to the function elektraIniGet. Calculating the update that has to
be done on the original INI file in order to retrieve s′ corresponds to the function
elektraIniSet. These two functions are independent from each other and are only
related by the intuitive expectations of their behaviour. One of these expectations is that
updates done on the Elektra tree are correctly propagated to the underlying configuration.
Indeed, the plugin makes sure that the file written in the function elektraIniSet is a
valid INI file and that all transformations done to the Elektra tree are reflected in the
modified file. Otherwise the plugin would no longer solve the view-update problem for
INI files because q(s′) 6= v′.

However, sometimes adhering to this specification is not a trivial task. For example, in
the case of the INI format the plugin has to restore comments with the correct comment
syntax. Some INI variants allow comments starting with ; as well as #. If a comment
was started with ;, the resulting Elektra Key (or MetaKey) must be written back
with ; in the write direction. However, if the comment was started with # instead,
the plugin has to remember this fact and use # in the write direction. Therefore the
plugin has to remember for each comment in the Elektra format which character was
initially used in the INI format. Another example is the handling of whitespaces. Even
if elektraIniGet hides whitespaces from the resulting KeySet, elektraIniSet
should restore them properly.

Although these expectations are well known, crafting a storage plugin that adheres to all
these requirements is hard. This claim is supported by the fact, that at the time of this
writing no storage plugin is able to fully restore all of the initial formatting information
such as whitespaces at any places.

The advantage of using independent view and update procedures is high expressiveness.
Because no law dictates how exactly the two functions correlate, many implementa-
tions for each of the functions are possible. But again, this implementation freedom
comes at a cost. Not only must the plugin be written properly in the first place, but
changes to one translation function must be reflected in the other one. Both direc-
tions must be kept in mind at all times. As an example consider a change to the
syntax of sections in elektraIniGet. If the syntax of sections was changed from
[section] to <section>, the elektraIniSet function would have to be changed
as well. Otherwise it would produce files with [section] sections that could not be

7

2. Theoretical Background

read by elektraIniGet anymore.

2.3 Bidirectional Transformations
In contrast to the approach above, bidirectional transformations describe both transfor-
mation directions in a single specification. One can think of being able to run one and the
same program in forward and in backward direction. When run in forward direction the
program transforms the concrete source into an abstract view. When run in backward
direction the program transforms an updated view back to the corresponding source
representation. Different formalisms exist that aid in the design of such specifications.
Constructing these specifications is called bidirectional programming.

This approach was chosen for Augeas. In particular, Augeas uses so called lenses that
incorporate this principle of combining both transformations in a single specification. For
Augeas to handle configuration files, it is sufficient to provide a single description of the
configuration file format. From this description, a function mapping the configuration to
a tree, and a function mapping the modified tree back to a modified configuration file, is
constructed automatically.

2.4 Bidirectional Programming with Lenses
Foster, Greenwald, Moore, Pierce and Schmitt initially proposed lenses in [13] to tackle
the view-update problem for tree structured data. However, the concept can be used to
transform between completely different data types as well. A lens is just the packaging
of everything that is needed to do a complete round trip: from a source representation to
the abstract view and from the updated view back to the modified source. Formally a
lens can be described as follows [14]:

Definition. Let U be a universe of objects, S ⊆ U be a set of concrete sources and
V ⊆ U be a set of views. Then a basic lens consists of three functions, namely get, put
and create:

l.get ∈ S → V

l.put ∈ V × S → S

l.create ∈ V → S

Put and Create are very similar, except that Create constructs a completely new source
from the given view, instead of updating an existing source. This additional function is
needed, if no concrete source exists yet that can be updated (e.g. if a new element is
created in the abstract view representation). The additional source argument in the put
function makes it possible for the get function to remove details from the source while
building the view. These details can be restored in the put function only with the help

8

2.4. Bidirectional Programming with Lenses

of this additional argument. For example, this allows lenses to remove whitespaces in
the abstract view, but properly restore them when transforming the view back to the
concrete source.

In order to formalise the intuitive expectations of transformation behaviour, three rules
suffice that correlate the lens functions [14]:

Definition. Let s ∈ S and v ∈ V , then the lens functions must fulfil the following laws

l.put (l.get s) s = s GetPut
l.get (l.put v s) = v PutGet

l.get (l.create v) = v CreateGet

Simply put, the PutGet as well as the CreateGet laws guarantee that all information
available in the view is actually propagated to the source. This means that no modifica-
tions done to the view are lost when the updated source is generated. The GetPut law
makes sure that the details abstracted away by the get function are correctly restored by
the put function.

Lenses can be classified into two different categories. Lens primitives are the basic
building blocks of a bidirectional program and do the actual transformation work. Lens
combinators combine other lenses (i.e. lens primitives or lenses resulting from other
combinators) to new lenses. As shown above, lenses have to specify what happens in both
transformation directions so there is nothing gained yet. But once a hand full of lens
primitives and lens combinators have been established, simple lenses can be combined
to form complex transformations without caring about their implementation details.
Especially a user of lenses does not have to know the details of both transformation
directions anymore. The lens laws guarantee that if a transformation can be described
with a lens (or combinations thereof) both transformation directions are valid. Due to
the clean formalisation of lenses, the adherence to the lens laws can be proved for the
initial lenses. The result is a framework which allows the user to describe one of the two
directions (usually the get direction) and get the other direction for free.

9

CHAPTER 3
The Augeas Storage Backend

3.1 The Augeas Library

Augeas is a library for reading and manipulating configuration files in a uniform way.
The idea behind Augeas is similar to the idea of Elektra, but Augeas’ focus is mainly
on reading and manipulating files instead of the whole stack of problems related to
dealing with application configurations. Augeas makes use of lenses to solve the problems
explained in Section 2.2. The simplicity of parsing files with the help of lenses is reflected
by the number of available lenses for Augeas. At the time of this writing Augeas is
bundled with 180 lenses. This seems to make it a perfect fit to be integrated in a storage
plugin for Elektra.

3.1.1 Lenses in Augeas

Augeas reads the lenses from so called schema files. These are specifications written in
a DSL (= Domain Specific Language) that is a subset of ML [17]. Apart from defining
lenses, this DSL allows the use of variables, functions and some other useful programming
constructs such as unit tests. The specified lenses are able to convert between strings as
concrete sources and trees as views. In order to take advantage of all the existing lenses,
the Augeas DSL was not modified in any way. Instead, the implemented storage plugin
uses the Augeas API to parse files with the existing lenses.

Each node consists of a label, a value and a list of subtrees. The list of subtrees is ordered.
Although the tree labels do not have to be unique, the API appends a unique number in
order to allow easier access.

There are several atomic lenses built into Augeas. The atomic lenses are parameterised
via a regular language (i.e. a regular expression). They take a regular expression which

11

3. The Augeas Storage Backend

they use to match parts of the configuration file. Atomic lenses can only be used to
gather different information pieces of a tree. Atomic lenses do not actually create the
tree itself. The tree creation is handled by the so called subtree combinator. The subtree
combinator combines all the information gathered by its contained atomic lenses and
builds a new subtree out of the matched information. The subtree combinator is a special
form of a lens combinator.

Combinators are used to combine lenses to more complex lenses. For example, the con-
catenation combinator can be used to build a single lens that represents the concatenation
of two smaller lenses. Another example is the repetition combinator that allows to repeat
a lens several times. The whole idea of using atomic building blocks and combining them
with combinators is based on the idea of constructing parsers in a modular way, as shown
in [8, 12].

Consider the following example:1

Listing 3.1: Augeas example schema
module Example =
let key_lens = key /[A-Za-z0-9]+/
let value_lens = store /[A-Za-z0-9]+/
let equal_lens = del "=" "="
let entry_lens = [key_lens . equal_lens . value_lens]
let lines_lens = (entry_lens . del "\n" "\n")*
let xfm = transform lines_lens (incl "/etc/example")

The variable key_lens holds a lens that makes the matched text available as the label
of the subtree it will be used with. The value_lens does the same for the tree value.

The variable equal_lens contains a primitive lens that hides a found equation sign
from the tree, but restores it as soon as the tree is converted back to a configuration file.
If a tree is newly created, the equal_lens also uses an equation sign as the default
character. This fact is represented by the second argument which resembles the parameter
for the lens Create function. Note that the default character must be matched by the
regular expression "=" used as the first argument. Otherwise the lens would violate the
CreateGet law. For example, del "=" ":" would not be a valid lens.

The variable entry_lens holds a subtree combinator (indicated by the square brackets).
It takes another lens as a parameter and is responsible for creating a tree. The tree
properties, i.e. label, value and subtrees, are the ones provided by the inner lens (for
example by the key primitive lens). In the example the combinator builds a new tree
from the concatenation of key_lens, equal_lens and value_lens. Keep in mind

1A schema may consist of other parts such as unit tests too. They were omitted for simplicity.

12

3.1. The Augeas Library

that the concatenation is again a single combinator lens (i.e. results in a single new lens)
and is therefore a valid parameter for the subtree lens.

The variable lines_lens holds a lens that is able to match several lines by repeating the
concatenation of two smaller lenses zero or more times. The concatenation concatenates
the entry_lens and a lens that matches and hides newlines and therefore is able to
match multiple whole lines containing an entry each.

Applied on the string k1=v1 the entry_lens would yield a tree with the key k1 and
the value v1. If the tree was modified to contain the value v2 and converted back to a
string, it would yield k1=v2.

Finally, the transform function tells Augeas to use the lens lines_lens to transform
the file /etc/example. Therefore the order of the lens definitions in the schema is
irrelevant. Only the lens supplied to the transform function is used to parse the file.
All other lenses are used to construct this final lens.

3.1.2 Aligning Pieces

The alignment problem is about matching parts of the abstract view with corresponding
parts of the concrete source. This is important if details from the source are hidden
during the conversion to the view. When the view is converted back to the source, these
details must be reinserted at the correct place. Otherwise the view-update problem had
not been solved correctly. As an example, consider the following snippet of an OpenSSH
server configuration. The alignment problem occurs when comment keys need to be
related to configuration directives.

AcceptEnv value1 # line comment 1
AcceptEnv value2 # line comment 2

The same key (AcceptEnv) is allowed to reoccur multiple times. Suppose that the
line comments should be abstracted away and therefore are not visible in the abstract
view. Different options exist on how a lens achieving this goal could look like. A straight
forward lens definition could be

Listing 3.2: Naive lens
let del_comment = del /([\t]+#.*|[\t]*)\n/ "\n"
let env = store /[A-Za-z0-9]+/
let accept_env = [key "AcceptEnv" . Util.del_ws_spc . env .

↪→ del_comment]
let lines = accept_env*

13

3. The Augeas Storage Backend

The lens lines in Listing 3.2 leads to the following Augeas tree:

root

AcceptEnv=value2AcceptEnv=value1

What should happen if a node with value value3 is inserted between the first and the
second AcceptEnv?

root

AcceptEnv=value2AcceptEnv=value3AcceptEnv=value1

Enumerated in Augeas, the tree with the inserted node would look like the following:

/path/to/file/AcceptEnv[1] = "value1"
/path/to/file/AcceptEnv[2] = "value3"
/path/to/file/AcceptEnv[3] = "value2"

The lens in Listing 3.2 would produce the following result in the configuration file:

AcceptEnv value1 # line comment 1
AcceptEnv value3 # line comment 2
AcceptEnv value2

Clearly, a more preferable solution would be

AcceptEnv value1 # line comment 1
AcceptEnv value3
AcceptEnv value2 # line comment 2

The reason for this behaviour is due to the way Augeas handles the alignment problem.
It follows the same approach as Boomerang [1]. During the conversion from abstract
view to concrete source, Augeas first builds a skeleton from all the deleted chunks and
leaves holes for the content actually present in the abstract view. Afterwards these holes
are filled with the corresponding subtrees. Subtrees are matched to holes in two different
ways. If the tree node labels are unique, the subtrees can be assigned to the holes by
using their labels. If the labels are ambiguous, Augeas falls back to the order of the tree
nodes. Conceptually the updated tree produces the following skeleton:

14

3.1. The Augeas Library

<hole for first node with label AcceptEnv> # line comment 1
<hole for second node with label AcceptEnv> # line comment 2
<hole for third node with label AcceptEnv>

Due to the ambiguous labels, the order identifies nodes. This means that after the
insertion the node with value value2 has become the third node with label AcceptEnv.

To avoid the assignment by order, the AcceptEnv token could be deleted and a unique
identifier could be used instead. For that reason Augeas provides the seq lens, which
works like a database sequence.

Listing 3.3: Lens with sequence
let del_comment = del /([\t]+#.*|[\t]*)\n/ "\n"
let env = store /[A-Za-z0-9]+/
let newidentifier = seq "acceptenvseq" . del "AcceptEnv"

↪→ "AcceptEnv"
let accept_env = [newidentifier . Util.del_ws_spc . env .

↪→ del_comment]
let lines = accept_env*

Now, the nodes resulting from AcceptEnv would be assigned unique names generated
by the sequence acceptenvseq. With the lens in Listing 3.3 the resulting tree would
look like the following:

root

2=value21=value1

If we now insert a node named 3 with value value3 between the first and the second
node

root

2=value23=value31=value1

Enumerated in Augeas, the tree with the inserted node would look like the following:

/path/to/file/1 = "value1"
/path/to/file/3 = "value3"
/path/to/file/2 = "value2"

Augeas would still be able to align the uniquely identified nodes 1 and 2 with their
position and the resulting file would look like desired:

15

3. The Augeas Storage Backend

AcceptEnv value1 # line comment 1
AcceptEnv value3
AcceptEnv value2 # line comment 2

Note that, unlike Elektra, Augeas does not sort nodes by their name in the data structure,
but by their implicit order. For that reason Augeas allows to explicitly insert nodes
before or after another node. Even though the label 3 is alphabetically greater than the
label 2 it can be inserted between 1 and 2.

The numbers generated by the seq lens as names are not important because of the
resulting order, but because of their ability to uniquely identify nodes. If the generated
file is reloaded in Augeas the seq lens would assign new numbers to the nodes while still
retaining the order of the file:

root

3=value22=value31=value1

Enumerated in Augeas, the tree would look like the following:

/path/to/file/1 = "value1"
/path/to/file/2 = "value3"
/path/to/file/3 = "value2"

3.2 Integrating Augeas with Elektra
If the Augeas API is used, the result of reading configuration files is the Augeas tree
structure. Although both of them use a tree as their abstract view, it turned out that
many details had to be considered. The Augeas tree structure is similar to the tree built
from Elektra Keys, but it still has some important differences though.

3.2.1 Recreating the Augeas Tree

When the augeas plugin is asked to write a KeySet back to the configuration file it must
convert the KeySet back to the corresponding Augeas tree. The attentive reader may
have noticed that this is another occurrence of the view-update problem. This time the
Augeas tree is the concrete source and the Elektra KeySet is the abstract view. As we
have learned in Section 2.1, the handling of updates can happen either by transforming
the update operations or by transforming states. Transforming states would mean to
wipe out the Augeas tree and create a new one from the modified Elektra tree. The first
version of the augeas plugin used exactly this approach. It turned out, however, that this
does not work because of Augeas internals. Some Augeas lenses create tree nodes with
NULL labels that are hidden from the tree. These are used to tackle different aspects of

16

3.2. Integrating Augeas with Elektra

the alignment problem (see Section 3.1.2 and [6] for more details on why NULL nodes
are used). Unfortunately, these invisible nodes cannot be accessed via the public Augeas
API. Although the hidden nodes are not deleted by public API calls, their position is
mangled indirectly as soon as sibling nodes are deleted and recreated elsewhere. As an
example consider the hosts lens. The lens uses the following line in order to preserve
empty lines and their position:
let empty = [del /[\t]*#?[\t]*\n/ "\n"]

Each empty line results in a new tree node (squared brackets), but is completely hidden
from the tree (inner del lens). The subtree lens contains no key or label lens and
therefore has a NULL label. These NULL nodes are contained in the tree between other
nodes acting as visible nodes. If all visible nodes are deleted, the hidden nodes concentrate
at the beginning of their parent node. All newly created nodes are inserted behind them.
This leads to a resulting file where all empty lines are moved to the beginning.

For that reason a different approach was needed. The augeas plugin now performs the
update of the Augeas tree in two phases. First, the value of all Augeas nodes with a
corresponding Key in the Elektra KeySet is updated. These nodes are known to still
exist because otherwise they would have been deleted from the Elektra KeySet. Next the
plugin cleans up all the Augeas nodes without corresponding Elektra Keys by iterating
over all the Augeas nodes and deleting them if no corresponding Elektra Key is found.

3.2.2 Key Ordering

One of the differences between the Augeas tree and the Elektra tree is that the children
of an Augeas tree are implicitly ordered by the data structure holding the child trees. In
contrast to that, Elektra KeySets are ordered by the Key names. This means that the
original ordering information of the Augeas tree must be preserved somehow. Otherwise
the original ordering would be lost by the abstraction and – even worse – the order of the
configuration keys would be changed as soon as the Elektra tree is written back. For most
applications the order of their configuration is a formatting issue, but for others changing
the order may break application behaviour e.g. access-control-lists. This problem was
also encountered during the development of the hosts plugin and is described in detail in
[16]. The approach chosen for most of the existing storage plugins is using MetaKeys.
MetaKeys are Elektra Keys attached to common Keys. They contain meta information
about the Key they are attached to. Ordering can be one of these meta information. Each
Key that should have a non default ordering2 simply has a MetaKey describing its order.
For example, in the hosts plugin the Key for first host entry is given an order MetaKey
with the value 1, the Key for the second host entry an order MetaKey with the value 2
and so on. This approach is reapplied for the augeas plugin. When the Elektra KeySet
is constructed from Augeas the Elektra Keys are numbered consecutively according to
their order in the Augeas tree.

2Currently, Elektra Keys are ordered lexically by their Key name.

17

3. The Augeas Storage Backend

3.2.3 Key Naming

The path of each Augeas tree node can be mostly reused as the name of the corresponding
Elektra Key. Elektra Key names have to be unique. Although tree nodes in Augeas are
not required to have a unique name, their name is made unique by the API. If multiple
nodes with the same path exist, the API appends the value of a counter to each node
name. However, the path names still had to be adjusted. Augeas makes the filename
where the configuration is read from a part of the node path. This part is replaced
with the path of the parent Key of the Elektra KeySet. The parent Key is just the
uppermost Key in the constructed Elektra KeySet and given in advance. This way,
Elektras ability to abstract over used files could be retained. The write direction does
not pose any problem because Elektra prohibits Keys with the same name anyway3.

3.2.4 Treatment of Comments

Comments are represented by Augeas as common tree nodes. This is in contrast to
Elektra that handles comments preferably as MetaKeys. Converting Augeas comment
nodes to Elektra Keys would definitely not fit into the Elektra concepts. Fortunately
comments have a well known label in the Augeas tree. They are named #comment by
convention. This gives the augeas plugin a chance to detect these special nodes and
convert them to MetaKeys.

However, comments may have different semantics, e.g. commented example configurations
vs. explanations of configuration keys. Therefore it might not always be useful to convert
Augeas comment keys to a fixed named Elektra MetaKey. Thus the idea came up to
make the conversion of Augeas comment keys configurable.

As it turned out, the need to convert specific Keys to MetaKeys emerged at different
places in Elektra. For that reason a plugin particularly suited for this task, called
keytometa, was developed. The functionality was split into a new plugin in order to stick
with the principle of single responsibility. The keytometa plugin is just another plugin
in the backend of the augeas plugin. It converts Keys into MetaKeys during the get
direction and reverses the conversion during the set direction. The Keys to be converted
are identified by MetaKeys attached to them. These MetaKeys control several aspects
of the conversion, such as the name of the target MetaKey. For example, the glob
plugin [16] can be used in order to attach this conversion control MetaKeys to the
target keys.

3Actually, the appending of Keys with the same name does not cause any error, but the new Key
simply overwrites the old one.

18

CHAPTER 4
Evaluation

The following sections deal with the question how the augeas plugin compares to Elektra
plugins specialized for one specific file format. In the following text these Elektra
plugins will be referred to as conventional Elektra plugins. At first, a feature
comparison is given, explaining in detail the strengths and weaknesses of the augeas plugin
implementation compared to conventional Elektra plugins. In addition, a benchmark was
performed to measure how resource intensive the augeas plugin implementation is.

It should be noted that the following comparisons are not a comparison between Elektra
and the Augeas library itself, but a comparison between conventional Elektra plugins
and the Elektra plugin that is based on the Augeas library.

4.1 Feature Comparison

The following section takes a closer look at how conventional Elektra plugins and the
augeas plugin cope with different kinds of problems occurring while parsing configuration
files. It is clear that the comparison heavily depends on the Elektra plugin in question
and the Augeas lens used in the augeas plugin respectively. However, some problem
areas reoccur in every conventional Elektra plugin as well as in the augeas plugin and
can be explained in general. Apart from the comparison with the augeas plugin such an
exploration of problem areas also helps to assess and understand the current abilities of
different Elektra plugins.

4.1.1 Handling of Comments

In Section 3.2.3 we see that the augeas plugin makes use of the keytometa plugin to
convert the created comment Keys to MetaKeys. Specifically this means that all Keys

19

4. Evaluation

named #comment created by the augeas plugin are converted to comment MetaKeys
by the keytometa plugin. However, this strategy causes two different problems:

Statefulness of Keytometa

The current keytometa plugin implementation is stateful. This means that during the
set direction only those MetaKeys are converted back to common Keys that were
originally created by the keytometa plugin. The reason for that is that the keytometa
plugin needs to retain information from the original Key that cannot be easily saved to
a MetaKey. For example, Elektra MetaKeys do not support MetaKeys themself. This
would cause the MetaKeys of the original Key to be lost because there is no place to
save them. As an example consider the following KeySet created by the augeas plugin
configured with the hosts lens:

Listing 4.1: KeyToMeta comment problem
system/augeashosts
system/augeashosts/#comment[1]
system/augeashosts/localhost
system/augeashosts/otherhost

Ideally the comment Key #comment[1] should be converted to a comment MetaKey
linked to the the Key system/augeashosts/localhost. However, if the comment
Key has MetaKeys itself (e.g. order) these MetaKeys would be lost during the
conversion.

The current solution for this problem is to store the original version of converted Keys in
the plugin state of the keytometa plugin. The plugin state is a storage area available to
each plugin that is managed by Elektra [16]. During the set direction of the keytometa
plugin the original Keys are restored from the plugin state. However, this means that
manually created MetaKeys would not be converted to common Keys because no
original version is found in the plugin state. For example, a comment manually added to
the key system/augeashosts/otherhost would not be converted to a #comment
Key.

Correlating Comment MetaKeys

The second problem is about linking the MetaKeys created by the keytometa plugin to
the correct Keys. The keytometa plugin provides several different options to configure
the correlation of MetaKeys to their corresponding Key. The correlation has to be
configured with special conversion MetaKeys for each Key to be converted. This can
be done in bulk by using the glob plugin. The combination of the augeas plugin, the
keytometa plugin and the glob plugin will be called the augeas backend. The contract
of the augeas plugin already provides a default configuration for the glob plugin:

20

4.1. Feature Comparison

Listing 4.2: Glob default configuration for the augeas plugin
/get/#1" = "*#comment*"

Metakeys:
"convert/metaname" = "comment"
"convert/append" = "next"
"convert/append/samelevel" = 1

/get/#1/flags" = 0

The configuration in Listing 4.2 causes the glob plugin to add three different MetaKeys
to each Key that matches strings containing #comment:

• convert/metaname specifies that each matching Key should be converted to a
MetaKey named comment

• convert/append specifies that the resulting MetaKey should be appended to
the subsequent Key in the KeySet.

• convert/samelevel option guarantees that comment MetaKeys stay within
their block

Especially the last option might be confusing at first. To better understand this option
consider the following hosts configuration file:

Listing 4.3: Simple hosts file with comments
line comment
127.0.0.1 localhost
192.168.0.1 testhost alias1 # inline comment
192.168.0.2 anothertesthost

This file would result in the following KeySet when read with the augeas plugin configured
to use the hosts lens:

Listing 4.4: Simple hosts file with comments in Elektra
system/hostssimple
system/hostssimple/#comment
system/hostssimple/1
system/hostssimple/2
system/hostssimple/3
system/hostssimple/1/ipaddr
system/hostssimple/1/canonical
system/hostssimple/2/ipaddr

21

4. Evaluation

system/hostssimple/2/canonical
system/hostssimple/2/alias
system/hostssimple/2/#comment
system/hostssimple/3/ipaddr
system/hostssimple/3/canonical

The glob plugin would now add the described conversion MetaKeys to system/
hostssimple/#comment and system/hostssimple/2/#comment. The key-
tometa plugin in turn would convert these two Keys to MetaKeys.

Without the samelevel configuration the MetaKey resulting from system/
hostssimple/2/#comment would simply be added to the next Key in the KeySet.
The next key would be system/hostssimple/3/ipaddr which belongs to another
host entry.

With the samelevel configuration the keytometa plugin tries to find a receiving Key
on the same hierarchy level. If no such key is found (as is the case in this example)
the MetaKey is added to the parent Key of the converted Keys hierarchy. In this
case the parent Key of the hierarchy is system/hostssimple/2 which represents the
testhost entry.

This simple combination of the augeas plugin, the glob plugin and the keytometa plugin
works well for many configuration files. However, the problem with this automated
approach is that comments not always semantically belong to the subsequent Key in the
KeySet. As an example consider introductory comments explaining the structure of the
configuration file. Such comments would semantically belong to the parent Key of the
KeySet. However, the above configuration would cause them to be appended to the first
ordinary Key succeeding the converted comment Keys.

An example of a configuration file where this undesired behaviour can be observed is
the Apache configuration as shipped with the Debian distribution1. The file contains
many explanatory introductory comments. The only convention in place is a blank line
between explanatory comments and comments belonging to a directive. The augeas
backend causes the comment MetaKeys generated from these explanatory comments to
be appended to the Key representing the first directive in the configuration file.

In the case of the Apache configuration file this is the Lockfile directive. This behaviour
causes the comment MetaKey of the resulting Elektra Lockfile Key to become 64
lines long. The result is not very intuitive either as the user would most likely not expect
the explanatory comments there.

1package version 2.2.22-13+deb7u6

22

4.1. Feature Comparison

Currently, the augeas backend cannot deal with conventions consisting of such specific
details. Augeas represents each comment line as a #comment node, regardless whether
the comment is a general explanation or belongs to a specific directive. Handling these
details would require a specialized lens for the use in the augeas plugin. The lens would
need to incorporate the convention of a separating blank between general comments
and comments belonging to one directive. Otherwise the keytometa plugin merges the
comment lines like in the case of the Lockfile directive.

In contrast to that, such conventions could be handled by fine-grained rules built into
conventional Elektra plugins. For example, general comments could be attached to the
parent key while specific comments are attached to the Key they belong to. However, at
the time of this writing no plugin did so.

Different kinds of comments

Some configuration files allow different syntax variants for comments. An example for such
a configuration file is the Samba configuration. Comments in the Samba configuration
file may use # as well as ; as the start symbol. Conventionally comments starting
with # are used for explanatory comments while comments starting with ; are used for
disabling directives. In addition, some configuration files allow inline comments. That
are comments written in the same line as a configuration directive.

Augeas correctly restores both inline comments and the character (e.g. # vs ;) that
was originally used to start a comment. Otherwise, the GetPut law would be violated.
While comparing this behaviour with existing plugins we noticed that conventional
Elektra plugins did not restore comments to their original representation (if they handled
comments at all). Especially the comment start character was not handled by any
conventional Elektra plugin. At this time only the flat comment MetaKey was specified
and documented. The comment MetaKey contained only the comment itself, but no
information about its original representation. Therefore conventional Elektra plugins
were not able to restore the original comment representation.

For that reason a new specification for comment MetaKeys was created. In addition
to restoring the original comment start character this model allows to also capture and
restore the exact formatting of the comment. This way the specification tackles two
common problems of existing Elektra plugins.

The new specification models comments as MetaKey arrays instead of a single MetaKey.
The first array entry is the inline comment for the Key (if any) and the remaining entries
contain the comments preceding the configuration directive. If no inline comment is
present the first array entry stays empty. Further, each array entry can have two subkeys

• the character used to start the comment, if any (e.g. # vs. ;)

23

4. Evaluation

• the number of spaces preceding the start character

The specification was in turn implemented in a small library and used to realize proper
comment parsing in the hosts plugin. However, while the library significantly eases the
correct implementation of the specification, parsing all the required information is still a
complex task. It took about 1200 inserted lines of code, 700 deleted lines of code and
several hours of work to implement the specification in the hosts plugin. Unfortunately,
the augeas backend currently does not support the specification. The augeas backend still
produces a single comment MetaKey. However, as the augeas backend uses Augeas to
create the resulting file, the correct comment start character and formatting is restored
anyway.

4.1.2 Preserving File Appearance

Configuration files often contain lots of formatting such as blanks, tabs and newlines.
Some of this information is syntactically or semantically required. For example, the
Apache configuration file may contain only one directive per line (although one directive
may stretch several lines). Each Elektra plugin and each Augeas lens has to cope with
this mandatory formatting correctly. This means that the formatting must be correctly
restored if it is hidden in the abstract view. Otherwise the implementation can be
considered at least partially wrong because it produces invalid configuration files.

However, usually there are also optional formatting details. These details might not be
essential for creating correct configuration files, but they most likely are essential for a
user editing the configuration file by hand. In this regard it can be considered crucial that
Elektra plugins correctly restore the original formatting details present in a configuration
file.

Exploiting the Power of Bidirectional Programming

Handling formatting details is a clear strength of the augeas plugin, because Augeas goes
to great lengths in order to retain them. Formatting details that should be hidden from
the abstract view can simply be deleted with the del lens and are automatically restored
when the concrete source is rebuilt. Augeas lenses also prevent that the programmer
forgets formatting details because each character must be parsed by a lens anyway,
otherwise reading a configuration file results in a parsing error. As an example consider
the lens that matches records in the hosts file:

Listing 4.5: Hosts file record lens
let record = [indent . store . sep_tab . key word .

[sep_spc . key word]*]

If the indent lens were removed from the lens combinator, the record lens would be
unable to parse host records with leading whitespaces. In turn, by adding the indent

24

4.1. Feature Comparison

lens the record lens not only is able to parse and hide the leading whitespaces, but also
to restore them when the abstract view is translated back to the configuration file.

Solving the View-update Problem by Hand

Unfortunately, the handling of formatting details is not so straight forward for conventional
Elektra plugins. As described in Section 2.2 conventional Elektra plugins require both
translation directions to be specified explicitly by writing code.

We saw in Section 4.1.1 that MetaKeys can be used to store information about the
original representation comments. The same principle could be used to store information
about the original representation of any other configuration directive too. As an example
consider the following INI configuration line:
initkey = inivalue

MetaKeys could be used to store that the key inikey is preceded by a whitespace and
that the = character is surrounded by whitespaces. However, at the time of this writing
no Elektra plugin is able to use MetaKeys in order to fully restore all hidden formatting
details.

4.1.3 Ordering

In Section 3.2.2 we already saw that entries in Augeas have an order and that this
order can be represented in Elektra with MetaKeys. In the set direction the order
MetaKey can be used to recreate the correct order in Augeas.

For many configuration files this imposed order is useful or even necessary. Other
configuration files do not require a specific order. For example, in the Samba configuration
file changing the order of entries only changes the appearance of the file. Configuration
files where the whole file or parts of it require a specific order can be further categorized
as follows.

Implicit Order

Configuration files in this category deal with order on a semantic level. As an example,
consider the squid configuration file. The access-lists occurring in this configuration
file require a specific order. A changed order would not just change the formatting of
the configuration file, but would also cause a changed behavior of the application. The
syntactic specification of the file does not impose a specific order on the access-lists.
It simply describes how an access-list has to look like. A squid configuration file may
contain access-lists in any order and still be syntactically valid. However, its semantic
changes significantly. Therefore additional information needs to be saved in order to
retain the original order. In Augeas this is done with the implicit order of child trees
in the Augeas data structure. In Elektra the original order is captured with order

25

4. Evaluation

MetaKeys. For configuration files with an implicit order it would not be useful to
renounce this information. Conventional Elektra plugins, as well as the augeas plugin,
require the user to specify the order of keys when creating or modifying the configuration.

Explicit Order

Configuration files in this category have a syntactic specification that imposes a specific
order for the whole file or some parts of it. As an example, consider the inittab
configuration file used in many Unix variants. According to its specification an inittab
entry has the following syntax:

id:runlevels:action:process

The order of the parts of an entry is fixed. The syntax specifically states that the identifier
always has to be the first field, followed by the runlevels and so on. The following entry

ca:12345:ctrlaltdel:/sbin/shutdown -t1 -a -r now

would result in the following Augeas tree

ca

process=/sbin/shutdown -t1 -a -r nowaction=ctrlaltdelrunlevels=12345

Figure 4.1: Valid inittab Augeas tree

The problem is that, although the subtrees runlevels, action and process could
be uniquely assigned to their corresponding position in the configuration file just by their
name, Augeas is not able to do so. Instead it still uses the order imposed by the order
of the subtree entries. As a result the following Augeas tree could not be successfully
converted into an inittab configuration file:

ca

process=/sbin/shutdown -t1 -a -r nowrunlevels=12345action=ctrlaltdel

Figure 4.2: Invalid inittab Augeas tree

This problem is especially nasty when a user tries to create a new subtree. The user
might know which fields constitute an inittab entry, but might not know in which order
they have to appear. As a consequence it might happen that the user creates the entries
with an invalid order and Augeas is not able to translate the tree into an inittab entry
anymore.

26

4.1. Feature Comparison

In contrast, a manually crafted plugin could be able to recognize the syntactical corre-
spondence between subtrees and their position in the file. For example, it could detect
that the node named runlevels resembles the runlevels entry and therefore write its
value to the second field regardless of its position in the tree. For example, this automatic
ordering is implemented in the fstab plugin.

4.1.4 Structural Abstraction

One goal of Elektra is to abstract over the underlying configuration structure. While
specialized plugins provide nearly every thinkable abstraction, the abstraction that the
augeas plugin can provide is limited by the language used for describing Augeas lenses.

Some restrictions in the language are needed, because Augas uses a typechecker that
should be able to statically check lenses for type-correctness. Many of the checks done
by the typechecker are only possible on regular languages. For example, the typechecker
needs to verify whether two concatenated lenses overlap. In this case the concatenation
would be ambiguous. However, determining whether the intersection of two context
free languages is empty is undecidable [11]. This means, that the lens language cannot
be extended at will, because otherwise the typechecker might not be able to statically
guarantee the correctness of lenses anymore.

Backreferencing in the Hosts Lens

One limitation that is encountered when trying to increase the level of abstraction is
the lack of backreferencing. The rest of this section will explain an example of missing
abstraction caused by the lack of backreferencing.

In the context of regular expressions used in practice, backreferences allow us to define
expressions that match only those words that were already matched by an earlier
subexpression. Usually the referenced expressions have to be enclosed in parenthesis
and are named with numbers starting from left to right. A more thorough definition
can be found in [2]. For example, consider the following regular expression containing
backreferences: ([ab])c\1. This regular expression would match the words aca and
bcb, but not acb, bca or acd.

The regular expressions used in Augeas lenses do not support such backreferences. The
reason is that the introduction of backreferences causes the described language not to
be regular anymore. This in turn would render the typechecker unable to statically
guarantee the correctness of lenses making use of backreferences. A detailed description
of this problem can be found in [3].

It should be noted that Augeas indeed supports some extensions to strict regular languages.
For example, lenses may be used recursively. The resulting expressions are not regular

27

4. Evaluation

anymore. As a result the typechecker can typecheck these extended expressions only
heuristically and issues with invalid lenses may arise during runtime.

Unfortunately, the absence of backreferences makes some desired abstractions impossible.
As an example we will consider a hosts file and how it can be represented in Elektra and
Augeas.

Listing 4.6: Simple hosts file
192.168.0.1 host.example.com alias1 alias2

At the time of this writing the Elektra hosts plugin would generate the following Elektra
KeySet (represented as a tree):

parent

ipv4

host.example.com=192.168.0.1

alias2=192.168.0.1alias1=192.168.0.1

As can be seen, the alias nodes also contain the IP address of the canonical entry as
value. Although the IP address of an entry exists only once in the hosts file the hosts
plugin parser is able to reuse it multiple times. In order to build a comparable tree in
Augeas, backreferences would be needed. An example of how the required lens could look
like is shown in Listing 4.1.4. However, note that Augeas would not be able to use such
a lens because of the backreference.

Listing 4.7: Lens with backreferences
let sep_tab = Util.del_ws_tab
let sep_spc = Util.del_ws_spc
let word = /[^# \n\t\/]+/
let record = [indent . store (word) . sep_tab . key word .

[sep_spc . key word . store \1]*
. comment_or_eol]

The backreference used in the alias subtree resembles the reuse of the already parsed IP
address.

28

4.2. Performance Considerations

4.1.5 Discussion

We saw in the feature comparison that the augeas plugin handles especially formatting
related issues very well. The augeas plugin could be used to uncover several shortcomings
of conventional Elektra plugins. However, its general nature sometimes causes inconve-
niences. We also saw that some of the issues of the augeas plugin can only be solved by
modifying the underlying Augeas lens, but at least in principle all the existing lenses can
be reused. The newly created plugin successfully bridges the gap between Augeas and
Elektra.

The augeas plugin together with the existing Augeas lenses is well suited as a proof of
concept for new configuration file formats, especially if no specialized Elektra plugin
exists. However, if more abstraction or specific features are needed, the default lenses do
not suffice anymore. In this case lenses specialized for the use in the augeas plugin are
needed. If even more abstraction is required, the development of plugin specialised on a
single configuration file should be considered. Therefore RQ1 can be answered positively,
but RQ2 must be answered negatively.

4.2 Performance Considerations

In addition to the qualitative comparison, the runtime behaviour of Elektra with different
mountpoint configurations was measured. A mountpoint is simply a combination of
plugins mounted somewhere in the Elektra tree. A more detailed description of the
mounting concept can be found in [16]. Considering the performance of Elektra is
relevant because some applications (e.g. KDE) use very large configurations with lots of
configuration files.

It should be noted, however, that the following results are neither a fully-fledged bench-
mark for Elektra and the augeas plugin nor for the Augeas library. The presented results
focus solely on the read performance of the plugins as reading configurations is the most
performance critical task when dealing with configurations.

4.2.1 Experiment setup

During the experiment three different mountpoint configurations were compared:

• a mountpoint with the specialised hosts plugin

• a mountpoint with the augeas plugin configured to use the Augeas hosts lens

• a mountpoint using the augeas backend, configured to use the Augeas hosts lens.
See Section 3.2.3 for why this combination is useful.

29

4. Evaluation

The hosts plugin was used for the comparison because its features are most comparable
to those of the augeas plugin. The augeas backend was chosen in order to analyze the
impact of an additional plugin on the mountpoint.

During the experiment the wall clock time of executing kdb ls <mountpoint> was
measured with the time utility. All measurements were performed by a shell script called
benchmark_augeas_hosts.sh that executes the kdb command 11 times for each
mountpoint. The shell script as well as the tested version of the augeas plugin and the
augeas backend can be found in commit 937c19636ede8d24d384e89f2e3867a445b81b89 of
the Elektra repository2.

The mountpoints were tested with nine different hosts files. The used hosts files, as well
as the benchmark results can be found in separate git repository3.

hosts file # lines line comments blank lines host entries
1 14 3 2 9
2 2349 51 3 2295
3 4138 166 3 3969
4 6068 1528 3 4537
5 8254 896 3 7355
6 10543 1124 3 9416
7 12053 1332 3 10718
8 14184 1613 3 12568
9 15571 1748 3 13820

Table 4.1: Different sizes of hosts files used for the benchmark

hosts file #1 resembles an ordinary hosts file as found on a default installation of the
Debian distribution. Hosts file #2 – #9 were generated from a hosts file containing
blacklist entries for filtering spam mails.

All the results were gathered on a virtual machine with 4 CPU cores and 4096 MB of
RAM running in VMware R© Workstation 12 Player. The virtual machine was running on
a computer with an Intel R© CoreTM i5 CPU, 16 GB DDR3 RAM and a Samsung R© SSD
850 EVO harddisk.

4.2.2 Experiment Results

In order to compensate statistical outliers, the median of the 11 runs was calculated for
each configuration. Table 4.2 shows the median runtime for the different mountpoint
configurations and the hosts files from Table 4.1.

2http://www.libelektra.org
3https://github.com/fberlakovich/bachelorthesis

30

http://www.libelektra.org

4.2. Performance Considerations

hosts file # augeas (s) augeas with keytometa (s) hosts (s)
1 0 0 0
2 0.70 0.80 0.02
3 2.03 2.18 0.04
4 7.89 8.11 0.05
5 8.41 8.93 0.08
6 14.28 15.11 0.10
7 20.84 22.26 0.13
8 30.31 31.91 0.15
9 37.15 39.21 0.16

Table 4.2: Median runtimes in seconds of the different mountpoint configurations

As can be seen in Table 4.2 the runtime for hosts file #1 is negligible as it is even below
the minimum runtime the time utility can measure.

0 0.02

0.04
0.05

0.08

0.1 0.13

0.15 0.16

0

0.7

2.03

7.89 8.41
14.28

20.84
30.31 37.15

0

0.8

2.18

8.11 8.93
15.11

22.26 31.91 39.21

0.1

1.0

10.0

0 5000 10000 15000
lines in hosts file

m
ed

ia
n

ru
nt

im
e

in
 s

variable

a

a

a

hosts

augeas
augeas
with keytometa

Figure 4.3: Comparison of the mountpoint configurations for differently sized hosts files
with logarithmic y-axis

Figure 4.3 shows the runtime difference between the specialized hosts plugin and the
augeas plugin. Note that the graph has a logarithmic y-axis because otherwise the
runtime increase of the hosts plugin would hardly be perceivable. While the runtime of
the hosts plugin increases nearly linearly with the hosts file size it still stays far below
half a second. Event for the largest hosts file its median runtime is only 0.16 seconds. In
contrast to that, the runtime values of the augeas plugin and the augeas backend suggest
that their runtime increases more than linearly with bigger hosts files. While hosts file

31

4. Evaluation

#9 is only about 2.5 times as big as hosts file #4, the runtime for the augeas plugin and
hosts file #9 is more than 4 times as long as for hosts file #4. Therefore the answer to
RQ3 is that the augeas plugin is much more resource intensive than conventional Elektra
plugins.

Figure 4.3 also illustrates that the addition of the keytometa plugin indeed increases the
runtime in a measurable way. However, the caused runtime increase is small compared
to the runtime increase caused by bigger hosts files. Furthermore, it can be avoided if
not needed due to the modularity of Elektra.

4.2.3 Callgraph Analysis

In order to narrow down the part of the augeas plugin that causes the massive runtime
increase the profiling tool valgrind [20] was used. A call to kdb ls for the mountpoint
with the augeas plugin and hosts file #9 file was profiled and revealed the callgraph
shown in Figure 4.4.

The callgraph shows only functions that cause at least 1% of the total runtime and only
one level of functions outside of the augeas plugin object file. Each node corresponds to
a function and each directed edge corresponds to a function call. The numbers below the
function names depict how much of the total runtime was caused by the function. The
labels of the directed edges show how often the target was called by the source.

The most expensive function in the augeas plugin is foreachAugeasNode. This
function is used to construct an Elektra KeySet from the nodes found by Augeas.
foreachAugeasNode first calls aug_match, which is used to retrieve a list of all
nodes in the Augeas tree. Afterwards convertToKey is called for each found node
which in turn calls aug_get. The callgraph shows that aug_match and aug_get are
responsible for nearly the whole runtime. These two functions are located in the Augeas
library itself. This means that the possibilities to optimise the augeas plugin without
changing the Augeas library are limited.

32

4.2. Performance Considerations

elektraAugeasGet
99.26%

foreachAugeasNode
99.26%

1 x

aug_match
37.50%

1 x

convertToKey
61.75%

44 044 x

pathx_first
16.99%

2 x

path_of_tree
20.51%

44 044 x

aug_get
61.02%

44 044 x

elektraGetDoUpdate
99.26%

1 x

Figure 4.4: Callgraph of the most expensive function calls in the augeas plugin

33

CHAPTER 5
Conclusion and Future Work

After an introduction describing the current problems with the implementation of Elektra
plugins we introduced the concept of bidirectional programming. We learned that a single
specification, called lens, can be used to transform a concrete source into an abstract
view as well as to transform a modified view back to the source representation.

Next the theoretical aspects of bidirectional programming were introduced. We saw
how Augeas uses the concept of lenses to transform between configuration files and tree
structures. Furthermore we learned how the Augeas library was used to build an Elektra
storage plugin that makes use of all the available Augeas lenses.

Then we analyzed the implementation of the augeas plugin and compared its features to
those of conventional Elektra plugins. We saw that Augeas especially excels at handling
formatting details. In contrast, existing Elektra plugins do not currently hide and restore
formatting details in a uniform way. A new library that restores formatting details with
the help of MetaKeys was created to solve this problem. We also learned that, due
to its generic nature, the augeas plugin sometimes cannot provide such a high level of
abstraction as conventional Elektra plugins. However, users of Elektra now have a choice.
They may either use the augeas plugin with its excellent handling of formatting details or
they may choose a conventional Elektra plugin if a higher level of abstraction is needed.

Many of the useful concepts found in Augeas could also be used in Elektra plugins. For
example, the concept of parser combinators allows the composition of complex parsers
from small and simple parts as shown in [9]. This could be used to ease the development
of future Elektra storage plugins.

At last we took a look at the performance of the augeas plugin. We saw that it is well
suited for small configuration files, but that the runtime quickly increases when the

35

5. Conclusion and Future Work

configuration file size is increased. Section 4.2.2 revealed that most of the runtime of the
augeas plugin is spent to fetch values. However, it is unlikely that all Elektra key values
are needed at once. Therefore the required runtime could be delayed until the value is
actually needed by supporting lazy loading of Elektra Key values.

36

Bibliography

[1] Aaron Bohannon et al. „Boomerang: Resourceful Lenses for String Data“. In:
Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages. POPL ’08. New York, NY, USA: ACM, 2008, pp. 407–
419. isbn: 978-1-59593-689-9. doi: 10.1145/1328438.1328487. url: http:
//doi.acm.org/10.1145/1328438.1328487 (visited on 03/26/2014).

[2] Alfred V. Aho. „Handbook of Theoretical Computer Science (Vol. A)“. In: ed. by Jan
van Leeuwen. Cambridge, MA, USA: MIT Press, 1990, pp. 255–300. isbn: 978-0-444-
88071-0. url: http://dl.acm.org/citation.cfm?id=114872.114877
(visited on 09/25/2015).

[3] Cezar Câmpeanu, Kai Salomaa, and Sheng Yu. „A formal study of practi-
cal regular expressions“. In: International Journal of Foundations of Computer
Science 14.06 (Dec. 2003), pp. 1007–1018. issn: 0129-0541. doi: 10 . 1142 /
S012905410300214X. url: http://www.worldscientific.com/doi/
abs/10.1142/S012905410300214X (visited on 03/06/2016).

[4] Haitao Chen and Husheng Liao. „A Survey to View Update Problem“. In: Inter-
national Journal of Computer Theory and Engineering (2011), pp. 23–31. issn:
17938201. doi: 10.7763/IJCTE.2011.V3.278. url: http://www.ijcte.
org/show-34-684-1.html (visited on 04/17/2014).

[5] Edgar Frank Codd. „Recent Investigations in Relational Data Base Systems“. In:
IBM Research Report RJ1385 (1974).

[6] David Lutterkort. „Augeas–a configuration API“. In: Proceedings of the Linux
Symposium, Ottawa. 2008, pp. 47–56. url: http://www.landley.net/kdocs/
ols/2008/ols2008v2-pages-47-56.pdf (visited on 03/26/2014).

[7] Umeshwar Dayal and Philip A. Bernstein. „On the Correct Translation of Update
Operations on Relational Views“. In: ACM Trans. Database Syst. 7.3 (Sept. 1982),
pp. 381–416. issn: 0362-5915. doi: 10.1145/319732.319740. url: http:
//doi.acm.org/10.1145/319732.319740 (visited on 04/17/2014).

[8] Jeroen Fokker. „Functional parsers“. In: Advanced functional programming. Springer,
1995, pp. 1–23. url: http://link.springer.com/chapter/10.1007/3-
540-59451-5_1 (visited on 08/16/2015).

37

http://dx.doi.org/10.1145/1328438.1328487
http://doi.acm.org/10.1145/1328438.1328487
http://doi.acm.org/10.1145/1328438.1328487
http://dl.acm.org/citation.cfm?id=114872.114877
http://dx.doi.org/10.1142/S012905410300214X
http://dx.doi.org/10.1142/S012905410300214X
http://www.worldscientific.com/doi/abs/10.1142/S012905410300214X
http://www.worldscientific.com/doi/abs/10.1142/S012905410300214X
http://dx.doi.org/10.7763/IJCTE.2011.V3.278
http://www.ijcte.org/show-34-684-1.html
http://www.ijcte.org/show-34-684-1.html
http://www.landley.net/kdocs/ols/2008/ols2008v2-pages-47-56.pdf
http://www.landley.net/kdocs/ols/2008/ols2008v2-pages-47-56.pdf
http://dx.doi.org/10.1145/319732.319740
http://doi.acm.org/10.1145/319732.319740
http://doi.acm.org/10.1145/319732.319740
http://link.springer.com/chapter/10.1007/3-540-59451-5_1
http://link.springer.com/chapter/10.1007/3-540-59451-5_1

Bibliography

[9] Richard A. Frost, Rahmatullah Hafiz, and Paul Callaghan. „Parser Combinators
for Ambiguous Left-recursive Grammars“. In: Proceedings of the 10th International
Conference on Practical Aspects of Declarative Languages. PADL’08. Berlin, Heidel-
berg: Springer-Verlag, 2008, pp. 167–181. isbn: 3-540-77441-6 978-3-540-77441-9.
url: http://dl.acm.org/citation.cfm?id=1785754.1785766 (visited
on 01/16/2016).

[10] Harmony Project home page. url: https://alliance.seas.upenn.edu/
~harmony/old/ (visited on 04/17/2014).

[11] M. A. Harrison. Introduction to Formal Language Theory. 1st. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1978. isbn: 978-0-201-02955-0.

[12] Steve Hill. „Combinators for parsing expressions“. In: Journal of Functional
Programming 6.03 (1996), pp. 445–464. issn: 1469-7653. doi: 10 . 1017 /
S0956796800001799. url: http://journals.cambridge.org/article_
S0956796800001799 (visited on 08/16/2015).

[13] J. Nathan Foster et al. „Combinators for Bidirectional Tree Transformations: A
Linguistic Approach to the View-update Problem“. In: ACM Transactions on
Programming Languages and Systems (TOPLAS) 29.3 (2007). issn: 0164-0925.
doi: 10.1145/1232420.1232424. url: http://doi.acm.org/10.1145/
1232420.1232424 (visited on 03/26/2014).

[14] John Nathan Foster. „Bidirectional Programming Languages“. AAI3405376. PhD
thesis. Philadelphia, PA, USA: University of Pennsylvania, 2009.

[15] A. M. Keller. „The Role of Semantics in Translating View Updates“. In: Computer
19.1 (1986), pp. 63–73. issn: 0018-9162.

[16] Markus Raab. A Modular Approach to Configuration Storage. de. Sept. 2010. url:
http://www.libelektra.org/ftp/elektra/thesis.pdf (visited on
03/26/2014).

[17] Robin Milner et al. The Definition of Standard ML - Revised. English. revised edition
edition. Cambridge, Mass: The MIT Press, May 1997. isbn: 978-0-262-63181-5.

[18] Patrick Sabin and Markus Raab. Implementation of Multiple Key Databases for
Shared Configuration. 2008. url: ftp://www.markus-raab.org/elektra.
pdf (visited on 03/26/2014).

[19] Sławek Staworko, Iovka Boneva, and Benoît Groz. „The view update problem for
XML“. In: Proceedings of the 2010 EDBT/ICDT Workshops. ACM, 2010, p. 20. url:
http://dl.acm.org/citation.cfm?id=1754262 (visited on 04/15/2014).

[20] Valgrind Home. url: http://valgrind.org/ (visited on 02/20/2016).

38

http://dl.acm.org/citation.cfm?id=1785754.1785766
https://alliance.seas.upenn.edu/~harmony/old/
https://alliance.seas.upenn.edu/~harmony/old/
http://dx.doi.org/10.1017/S0956796800001799
http://dx.doi.org/10.1017/S0956796800001799
http://journals.cambridge.org/article_S0956796800001799
http://journals.cambridge.org/article_S0956796800001799
http://dx.doi.org/10.1145/1232420.1232424
http://doi.acm.org/10.1145/1232420.1232424
http://doi.acm.org/10.1145/1232420.1232424
http://www.libelektra.org/ftp/elektra/thesis.pdf
ftp://www.markus-raab.org/elektra.pdf
ftp://www.markus-raab.org/elektra.pdf
http://dl.acm.org/citation.cfm?id=1754262
http://valgrind.org/

	Abstract
	Introduction
	Problem Statement
	A More Detailed Look
	Goal of this Thesis

	Theoretical Background
	Introduction
	Solving the View-update Problem
	Bidirectional Transformations
	Bidirectional Programming with Lenses

	The Augeas Storage Backend
	The Augeas Library
	Integrating Augeas with Elektra

	Evaluation
	Feature Comparison
	Performance Considerations

	Conclusion and Future Work
	Bibliography

