
Implementation of Multiple Key Databases
for Shared Configuration

Patrick Sabin
patricksabin@gmx.at

Markus Raab
elektra@markus-raab.org

March 7, 2008

Contents

1 Introduction 5
1.1 Configuration . 5
1.2 Elektra without mounting . 5
1.3 Elektra with mounting . 6

2 Use Cases 7
2.1 Views . 7
2.2 Elektra without mounting . 7
2.3 Elektra with mounting . 7
2.4 Other use cases . 8

3 Vision 8

4 Problem and choices 9
4.1 Classes . 9

4.1.1 Kdb . 9
4.1.2 Keyset . 9

4.2 Mountpoints . 10
4.2.1 Special Type Approach . 10
4.2.2 Static Configuration Approach . 11
4.2.3 Hybrid Approach . 11
4.2.4 Dynamic Mounting Approach . 11
4.2.5 Elektra Approach . 12

4.3 Locking . 12
4.4 Capability . 12
4.5 Access types . 12
4.6 Memory allocation . 13
4.7 Thread safety . 13

5 Implementation 13
5.1 Backend configuration . 13
5.2 Backend selection . 13

5.2.1 Hash Table . 13
5.2.2 Trie . 14

5.3 kdbOpen . 14
5.4 kdbGet . 14
5.5 kdbSet . 15
5.6 Dynamic mounting/unmounting . 15
5.7 Trie . 15
5.8 KeySet . 16

6 Status 16

2

7 Further Work 16

8 Conclusion 16

9 Glossary 17

3

Registry, libraries and modules have been proposed as well-suited storage for soft-
ware configuration. Yet so far, there’s a dilemma in choosing between a system-wide
configuration setting database or a configuration database optimized for the user’s
needs, not accessible from other software.
We demonstrate that it is possible to share configuration with different backends
(i.e. different configuration formats) using the technique of dynamic linking, which fits
transparently into the hierarchical key namespace. This takes place by mounting the
appropriate backend to a system-wide unique key name.
We also describe how to use multiple databases at once to achieve shared config-
uration without losing the substantial benefits to the administrator and programmer
configuration.

1 Introduction

This paper describes our work in the
context of our project thesis. We added a
new feature to the Elektra Project called
mounting that we would like to describe
here. Elektra introduced its own technical
terminology, which is not well known. So
we decided to explain Elektra first, before
we went on to the mounting feature. Ad-
ditionally, we added a glossary listing the
Elektra terminology andmarked all words
in the text that have an additional explana-
tion in the glossary italic.

1.1 Configuration

There are different possibilities for con-
figuring software, from xml to databases.
However, the old way to use configuration
files with a basic syntax is still a very com-
mon approach. System and user configu-
ration exists quite often onmultiuser oper-
ating systems.

System configuration is typically in-
stalled during setup, shipped with a soft-
ware package, and can only be changed by
a system administrator. On Unix systems,
system configuration can be usually found
under /etc.
Additionally, there is a user configura-
tion. Every user in the system can use his
own configuration, which might be differ-
ent to the other users and the system con-
figuration. Entries in the user configura-
tion typically supersede those of the sys-
tem configuration. On Unix systems, the
user configuration is most often located in
the home directory of the user, quite often
in hidden files. A program usually tries to
read the user configuration first and then
the system configuration, if it doesn’t find
it in the first place. This procedure is called
Cascading.

Cascadingmust be implemented for ev-
ery program by itself and so the exact pro-
cedure of reading configuration may dif-
fer in every software package. Moreover,
the location of the configuration differs on
every system, depending on the operating
system or the distribution. This is a prob-
lem for an application developer since he
has to know the exact location of the con-
figuration files in order to access them. So
he is obliged to use a lot of system depen-
dent codes (e.g. #ifdef in C) to write a
portable application.
The parsing of configuration files - an-
other common task in configuration - is of-
ten done slightly differently even though it
provides the same functionality.

1.2 Elektra without mounting

In this section, we want to describe what is
possible with Elektra, without the mount-
ing feature added in this work. Elektra
started as a library for writing and reading
configuration files.
All the configuration is mapped into
an abstract, common namespace, that is
the same in every system. Elektra ab-
stracts every configuration in key/value-
pairs, where every key is stored in its direc-
tory. Almost every software configuration
can be represented that way. The Elek-
tra namespace distinguishes between two
kinds of keys. The name of system keys
for the system configuration looks like:

system/directory/program/key

Of course, there can be as many directo-
ries as needed. The characteristic for sys-
tem keys is that they start with ”system”.
Additionally there are user keys, where
the name looks like:

5

user/directory/program/key
user:username/directory/program/key

The username is optional. If you don’t
specify it, the current user will be as-
sumed, e.g. the environment variable
$USER will be used.
The part of storing your configuration is
done by a so-called backend. Elektra sup-
ports multiple backends and you canwrite
your own, if you like. Every backend can
have different advantages. One can be
very efficient in respect to execution time
or it may reduce the amount of disk usage.
You can choose the backend you like most,
but the problem is that without mount-
ing you shouldn’t use different backends
for different programs, otherwise the com-
mon namespace will be destroyed.
Without mounting, a single backend
was used to supply all keys for an appli-
cation. This approach works perfectly for
systems where all programs use the same
backend, but completely fails in other
cases.
Without mounting, you need to use the
Elektra library to get your keys in the ab-
stract namespace. To use Elektra with an
existing program, it has to be patched.
Thus a single backend needs to be a jack-
of-all-trades, not optimized to any secu-
rity, performance or syntax requirements.
Thus old syntax can’t be supported. Elek-
tra applications need to be patched to pre-
vent bypasses to the global backend. If
you do not take measures yourself, you
lose your old configuration method. This
is very inconvenient and so mounting has
been introduced.

1.3 Elektra with mounting

As stated in the previous chapter, using
Elektra without mounting has some prob-
lems, which we want to summarize:

1. An existing piece of software needs
to be patched and linked against the
Elektra library to take advantage of
it.

2. You need the same backend for ev-
ery software program to keep the
common namespace.

3. Getting a configuration file like
/etc/passwd in the Elektra names-
pace requires patching all the tools
that may access this file, which can
be a lot.

The mounting feature solves all the
problems listed above. With mounting,
you can specify for every key directory,
which backend should be used for it and
all its keys in subdirectories. So you can
use a different backend for every program
. This backend can be specialized for a sin-
gle application. So instead of patching old
software it is possible to write a new back-
end for this application. With mounting,
there is no need to dig around in an appli-
cation’s source code, instead you simply
add an Elektra backend. So the first item
is solved.

With the mounting feature it is easy to
specify a backend for an application. You
can choose a backend for a program that is
linked against the Elektra library and you
don’t lose the common namespace. So the
second point is solved.

For configuration files like /etc/passwd,
you can write a simple backend. This file
can still be used and is mapped into the
Elektra namespace. If you make changes
to /etc/passwd, they are visible in the
Elektra namespace. Respectively, if you
make changes using Elektra the password
file is updated. So the third problem is
solved as well.

6

2 Use Cases

2.1 Views

It is possible to define different roles in
Elektra. Every role has its own view.
For instance there is the view of the user
or administrator. He has the advantage
of the standardized namespace. Applica-
tions exist to edit the Elektra namespace
(e.g. kdbedit, kdb commandline tool). The
user can use one tool to configure all his
applications and he doesn’t have to search
for the configuration files.

Another view is the one of the applica-
tion developer. He can take advantage of
Elektra as a library for reading and writ-
ing configuration or he can write a spe-
cialized backend for his own application.
Another advantage is that he can easily ac-
cess the configuration of another program
or system configuration without portabil-
ity problems.

The last view is the one of the package
maintainer. His installation scripts can
use Elektra to configure each application
individually.

2.2 Elektra without mounting

Oyranos is a color management applica-
tion and one of the first using Elektra. The
developer decided to use Elektra when he
started writing his application. He didn’t
want to write the code for parsing the con-
figuration on his own. And he wanted
his program to be cross-platform. Mak-
ing the configuration system portable on
one’s own is tedious work. As Elektra is
in quite an early stage he did not have
much use of the common namespace, be-
cause there were almost no other applica-
tions that used Elektra at this point, but
the Oyranos user can use tools that are

shipped with Elektra (e.g. kdbedit), to
change the configuration. Since the deci-
sion to use Elektra was made at the begin-
ning of the project, rewriting of code was
not necessary.

Another project that already used Elek-
tra before mounting was introduced was
Samba. Samba already had a configura-
tion system, before someone hadmade the
decision to rewrite it using Elektra. There
was a patch around for Samba to use Elek-
tra, but it was hardly used, because it in-
terferedwith the old configuration system.
If a system administrator used Sambawith
Elektra he couldn’t use his old configura-
tion files, but instead had to use the Elek-
tra tools. Another way is to understand
where the configuration is stored, which
depends on the backend.

2.3 Elektra with mounting

We want to look at a use case for Elek-
tra with the mounting feature. In this use
case we have a system administrator of a
Unix or Linux system. He wants to add
new users to his system. For this purpose
he has to edit the /etc/passwd configu-
ration file. He can edit this file by hand,
but it is easier to use a system manage-
ment tool. In our example, he uses the
program useradd. This tool modifies the
passwd file. In his system, there is Elektra
with the passwd-backend installed. The
passwd backendmaps the passwd file into
the Elektra namespace and the other way
round. So he can use a tool like kdb-
edit, that is linked against Elektra to add a
new user. Although useradd is not linked
against Elektra, changes done using kdbe-
dit are seen in useradd and vice versa. If
he wants to update his system and installs
a version of useradd that is linked against
Elektra, let us call it useradd-elektra, this

7

is still possible without problems. The tool
useradd-elektra simply edits the Elektra
namespace, that is written to the passwd
file. So he still can edit /etc/passwd
manually using a text editor.

2.4 Other use cases

1. There are many configuration files in
every system that can’t be replaced
for various reasons. These files
can be faded into the global Elek-
tra namespace without applications
using these files taking notice. Back-
ends for /etc/fstab, /etc/mtab,
/etc/passwd and /etc/hosts
exist so far.

2. Users or administrators might be
accustomed to certain files or syn-
tax without wanting to change
the whole configuration using Elek-
tra. The mounting technique allows
them to choose.

3. Specific programs may have a very
complex and large configuration. Bi-
nary files with an index may give
them a better performance without
missing the connection to the global
namespace.

4. It is possible to extend Elektra by
writing specialized backends. One
important backend is daemon which
sends the configuration to a network
daemon instead of storing it locally.
Doing so you can cache configura-
tion and notify applications.

5. Configuration provided by daemons
can’t be used for every program.
Configuration related to the boot
process needs to be available with-
out them, but should also be ac-

cessed by applications needing con-
figuration from network.

3 Vision

So far we have learned that Elektra in-
troduces a global namespace which can
be accessed independent of the operating
system and programming language. That
is, at first glance, a nice feature for de-
velopers. It can save a lot of time in
projects invested in fixing problems of par-
ticular operating systems. It also sounds
nice to save time for writing support for
parsers and generators for every program-
ming language used in their projects.
But there is more about it that can
be summarized as integration of soft-
ware. Applications should share appear-
ance, keybindings, language, proxies and
much more. There are user, administrator
and operating system preferences describ-
ing what should be used. Applications of-
ten already have the feature to appear dif-
ferently and show messages in a different
language, but often don’t invest enough
time to find the perfect configuration for
that user and system.
That’s where Elektra comes in. Elektra
exactly provides a place to access this in-
formation easily. It allows applications to
tie together in a way which was not pos-
sible before giving great power to express
what behavior is expected. It is up the
programmer to standardize where, in that
namespace the information resides.

8

4 Problem and choices

This section discusses the problems that
we encountered when we designed the
interface for mounting backends and ex-
plains how the internals work together but
leaves out implementation details.

4.1 Classes

The API uses an object-oriented design
and there are only three classes as shown
by the figure:

KeyKeySet

KDB

KDB introduced more and more meth-
ods in the past to implement links and to
remove or rename keys. With some tricks,
we could reduce them to four core func-
tions, allowing for the implementation of
mounting in a single place.

Keys may now bemarked to be removed
and be stat()ed only. Doing so you
gain more flexibility and we were able to
provide the same functionality in a new
interface with kdbOpen(), kdbClose(),
kdbGet() and kdbSet().

4.1.1 Kdb

The following text will try to dis-
tinguish between kdbGet() and
kdbGet_backend(). Substitute
_backend with the name of a specific

backend to receive the correct method
name of the backend. For example,
kdbGet_filesys() is the name for
the kdbGet_backend() method of the
backend filesys. kdbGet() is the in-
terface for applications to Elektra and
kdbGet_backend() will do the work
and construct the keyset out of perma-
nent storage supported by backends. So
kdbGet() calls kdbGet_backend()
and the information is passed back to
kdbGet() to be filtered out and combined
together.
kdbSet() works the other way round
by filtering and splitting the information
before passing it to kdbSet_backend().
kdbOpen() and kdbClose() work re-
spectively without information exchange.

Error Conditions While using
kdbGet(), error conditions are rare and
you see where the error occurs by looking
at the last keys you got. But kdbSet()
may fail at any point. This was solved by
marking the key where the problem ap-
peared.

4.1.2 Keyset

The kdb functions described above need
a datastructure for efficient information
flow. The previously used link list caused
some problems. It did not scale well
for large keysets, because ksLookup(), a
very common operation for finding a key
in a keyset took O(n) on average. Sort-
ing was also very inefficient, realized by
constructing an array out of the list, run-
ning qsort() and transforming it back to
a linked list.
This was solved by using an extendable
array as datastructure, looking up with bi-
nary search but sorting with qsort() re-
mained the same.

9

Another main problem of the previous
implementation was the impossibility to
store a key in more than one keyset be-
cause the next pointer was directly in the
key datastructure. While this was solved
with the array, a new problem appeared
because of ksDel() calling keyDel().
That caused a problem that a key might be
deleted which was used in another keyset.

The most visible change is that
ksNew() now takes a parameter to give a
hint for the size of the keyset. Afterwards,
there is a variable number of pointers to
keys that will be added to the freshly al-
located keyset. The advantage is that the
user can create an arbitrary keyset with a
single C-statement, which is heavily used
by ksGenerate() and keyGenerate(),
that both allow to output the particular C-
code for a keyset and a key.

ksDel() is used to keyDel() all keys,
which are in the keyset. This principle con-
flicts with a key in multiple keysets. To
avoid this problem, a reference counter for
keys was introduced. Whenever a key is
added to a keyset it is incremented and it is
decremented when it is removed. The key
itself will be deleted when the last keyset
holding it is deleted.

4.2 Mountpoints

From the very beginning, it was clear that
the backend selection criterion should be
the key name. Doing so, you can get log-
ically grouped keys together in the same
backend as desired. There are differ-
ent possibilities to achieve mounting, each
with its own strengths and weakness.

In this section, we will look at different
approaches we evaluated to implement in
Elektra and present our choice afterwards.

4.2.1 Special Type Approach

In Elektra, every key has its own type de-
scribing the kind of information it holds.
This approach introduces a new key type
KEY_TYPE_MOUNT. Whenever such a key
is noticed by kdbSet() or kdbGet(), the
backend, named by the value of this key,
will be used from then on for all subkeys.
The subkeys themselves also can be of the
type KEY_TYPE_MOUNT.

+ There is no limitation where the
mountpoint is. Any backend being
capable of representing a key of type
KEY_TYPE_MOUNT may have arbi-
trary other backends mounted with-
out any other external information
needed. Using this possibility one
network backend may delegate to
another one without any local infor-
mation about that.

+ Performance impact only takes place
when actually reaching keys con-
taining mountpoints. It can be im-
plemented without any significant
loss compared to not using mount-
points, thus kdbOpen_backend()
can be omitted for backends not vis-
ited.

You could even avoid having a
data structure containing any in-
formation about mountpoints. Do-
ing that every kdbGet() and
kdbSet() would produce the same
expense but reduces initial effort in
kdbOpen() since no backend needs
to be loaded.

- kdbGet() and kdbSet() need to
walk through every part of the key-
name from root to the requested
leaves. This requires some effort

10

without backends, but could be very
expensive using network backends
redirecting to local backends.

- Every user must have a local key
from the default backend even if an-
other backend is used for user/.
This requires the user to have a home
directory andwould not be very con-
venient when using a network back-
end for users.

- The implementation effort is higher
because every backend must be
modified to support the type
KEY_TYPE_MOUNT and there is no
central place where a data structure
can be built. This approach can’t be
used as a solution for backend config-
uration.

Mainly because of the last issue we de-
cided not to implement mountpoints with
a special type.

4.2.2 Static Configuration Approach

Another method turned out to be cen-
tral storage for all information where each
backend should be mounted. This could
reside in an external configuration file, but
the much easier and convenient way is to
store it in the key database itself.
The predefined place storing the
configuration is system/elektra/-
mountpoints. This key directory con-
tains configuration, i.e. mountpoints,
name of the backends and their configu-
ration.

+ Users are not required to have any
files related to configuration in their
home directory. Root directories can
be mounted in a central place con-
trolled by the administrator.

+ The performance impact depends on
the number of backends mounted
but not on the number of keys, lead-
ing to good overall performance.

- You need an extra implementation
for users to make their user/-
elektra/mountpoints work.

+ After building an in-memory data
structure of all mountpoints, the
changes to the rest of Elektra are eas-
ily understandable and there is no
need to modify the backends.

4.2.3 Hybrid Approach

The two possibilities fit together well.
While the configuration approach makes
the administrator’s life easier, the type ap-
proach provides an ad-hoc solution for
users and applications to use a specific
backend. Backends do not notice if they
are mounted by configuration or a special
type.
In this scenario, the configuration ap-
proach is only used for mounting user/,
network backends and backends not sup-
porting KEY_TYPE_MOUNT type. Keeping
it to a minimum, reduces the backends
which must be opened at kdbOpen().
One drawback is that it adds some more
complexity inside Elektra, but not visible
to the programmer. The other is that it
needs a lot of optimization techniques to
handle both scenarios well.

4.2.4 Dynamic Mounting Approach

A completely different approach break-
ing the global namespace of Elektra is
kdbMount() and kdbUnmount() to let
software using Elektra decide where to
have which backend not visible by other
processes.

11

This might look like nonsense at first
sight, but could be used by a daemon
backend to extend the namespace on a lo-
cal machine. Below the path where the
daemon backend is mounted, the daemon
process chooses dynamically which back-
ends to use. Though all applications using
that path send the keyset to the daemon,
they all see the same keys below, restoring
the global namespace.

4.2.5 Elektra Approach

The decision was made in favor of static
configuration for system/ only and pro-
vides dynamic mounting. The use of type
KEY_TYPE_MOUNT and configuration of
mounting for users may be added in fu-
ture.

4.3 Locking

Elektra does not claim to fulfill either all
requirements of a database or a filesystem.
The key database is stateless, that means
after kdbOpen() a random sequence of
kdbGet() or kdbSet() can occur with
only kdbSet() influencing a consecutive
kdbGet(). The actions take place at once
and there is no more information present
than what exists in the database.

Backends should support read/write
locks. Because of this, concurrent calls
only impact in a sequential order.

Because of an imbalance use in terms
of frequency towards kdbGet(), the is-
sue that kdbSet() locks a whole hierar-
chy does not influence negatively. But sub-
stantial benefits arise because deadlocks
can’t occur and implementing backends
becomes easier.

4.4 Capability

Some backends fulfill the whole spec-
ification of kdbGet_backend() and
kdbSet_backend() and support all
Elektra features. Other backends have
principle limitations and do not imple-
ment all features described in the speci-
fication but are useful nevertheless.

One reason may be that some parts are
simply not implemented because of lack
of time or the software did not need more
features. The other reason is because of
problems with syntax to represent all fea-
tures. Some file formats just lack a way to
express a comment or a key type.

To handle this problem we created a
data structure describing what capabilities
a backend does not have. With that tech-
nique, you can use the testing framework
for developing the backend from early
stages. To do so, just declare your back-
end has only implemented minimal fea-
tures and delete step-by-step missing ca-
pabilities while your backend evolves.

4.5 Access types

Elektra used to have a 3 bits access rep-
resentation similar to the filesystem bits.
While the read write bits have their usual
meaning, they control if value/comment
may be changed, the executable bits had
no meaning.

Semantics changed concerning direc-
tory keys. One executable bit is sufficient
to allow the backend to create a directory.
User, group or world need their appro-
priate executable bit set to access the sub-
directories.

12

4.6 Memory allocation

A design decision is that everything al-
located by Elektra will be freed, which
avoids unreproducible bugs triggered by
the use of different libc or implementa-
tions of malloc() and free().

4.7 Thread safety

To achieve thread safety, backends
are not allowed to use any global
variables. Instead, they should use
kdbhSetBackendData() to store back-
end related data.

5 Implementation

Elektra provides a global namespace. The
idea behind backend mounting is that you
can choose, with limitations, which back-
end you use to read or write a key. Back-
end selection is done by the full key name.
So you have to provide a table of directo-
ries mapping the Elektra namespace with
the corresponding backends. Elektra then
chooses for each key the longest directory
entry in the table, that is a subdirectory of
the absolute keyname. If this is not avail-
able, it uses the default backend.

5.1 Backend configuration

kdbOpen() loads the default backend.
Then it reads its own configuration, using
this backend. This contains the mount-
points for the various backends and its
configuration and is usually located un-
der system/elektra/mountpoints/.
The configuration will be passed on to
the backends. Because we introduced
the backend configuration with the backend
mounting all together, we can now use it

different ways, e.g. to mount it to a dif-
ferent mountpoint or to use a different file
to store data, because the backend may be
used more than once.

5.2 Backend selection

There is a need to determine for a single
key which backend it belongs to. This can
be simply solved by looking up the table of
all mountpoints and choosing the longest
entry, that is completely a substring of the
key name. Therefore, each mountpoint in
the table must end with a ’/’ to make the
lookup correct. Otherwise, two mount-
points that have the same name, except
for one of themwhich has some additional
characters at the end, could not be distin-
guished.

The table lookup is a very common op-
eration and should be as fast as possible.
The creation of the table is only done once
and so time efficiency is not so important.
To solve this problem, two data structures
for the implementation were considered.

5.2.1 Hash Table

A hash table is a very efficient data struc-
ture that has constant-time (O(1)) key-
value lookup on average. This sounds
good at first sight, but the problem is a
bit more complicated than that. Instead,
you search for the longest prefix for the
key-value. To use a hash table, we must
compute the index for every substring of
the key and look for the associated value.
From there, the complexity is proportional
to the length of the string. That is why a
hash table doesn’t seem to be optimal for
this kind of problem.

13

5.2.2 Trie

Instead of a hash table one can use a tree,
that has O(log(n)) complexity for lookup,
where n is the number entries in the tree.
The number of entries is the same as the
number of mountpoints and should not be
very high. Even if someone for an unex-
pected usage uses millions or billions of
backends, theO(log(n)) complexity would
scale quite well. In such a case, mem-
ory consumption is likely to present a big-
ger problem than time complexity. But for
the intended use of Elektra, the number of
backends will be quite small, maybe up to
a few hundred at most.

A requirement is to make the lookup as
fast as possible, so optimizations need to
be considered. One possibility is to use a
kind of tree that is often known as trie[5]
in literature. For each character, there is a
possible branch in each node. To choose a
path to walk down, the algorithm uses the
value of a character as an index for the ar-
ray of subnodes. This simple array lookup
can be done in O(1). If the trie branches
at every character, it will be very loose. To
compress it, all nodes with only one child
will be compressed into their parent node.
So the trie only branches if there is more
than one to walk down. The compression
also quickens the lookup time, because the
lookup-functions use strcmp() instead
of comparing each character on its own.

5.3 kdbOpen

After kdbOpen(), the default backend is
opened. Then we read the configuration
and create a data structure that contains
all mountpoints and corresponding back-
end handles. This data structure should
be able to look up the mountpoints fast.
We decided to use a trie to speed up the

lookup. So we have to create a trie in
kdbOpen() and delete it in kdbClose().

kdbOpen() returns a pointer to a newly
allocated handle. This has to be done for
every thread using Elektra.

5.4 kdbGet

kdbGet_fstab

kdbGet

Trie

kdbGet_passwd

kdbGet_filesys

...

The function kdbGet() is the only in-
terface to read activities of backends. The
parameters are a handle from kdbOpen(),
a keyset, a parent key and an integer for
options. The function first fetches the par-
entKey by looking up the backend for it
and running kdbGet_backend() for it.
The received keyset will be post-processed
by sorting hidden keys out and considers
other options. The directory keys will be
handled by a recursive call of kdbGet(),
making sure that mountpoints are consid-
ered.

14

5.5 kdbSet

kdbSet_fstab

kdbSet

Trie

kdbSet_passwd

kdbSet_filesys

...

The function kdbSet() has the same
parameters like kdbGet() but it works
the other way round. Here you already
have the full keyset and the job is to sep-
arate keys to their backends. To do so,
the keyset is pre-processed by grouping
keys for the same backend together. When
at least one key has changed the keyset
will be transferred to persistent storage
by looking up the backend and running
kdbSet_backend() for it.

5.6 Dynamic mounting/unmounting

The usual way to mount a backend is to
use the Elektra configuration. But some-
times, you don’t want to close and re-
open afterwards just because there is a
little change in the mounting structure.
So we implemented dynamic mounting.
You can use the function kdbMount() to
mount a new backend or you can un-
mount it using kdbUnmount(). This
function only changes the current mount-
ing table, but not persistently. Closing and
reopening kdb will drop all changes made
by kdbMount() or kdbUnmount(). To
change the mounting table persistently,
someone has to edit the configuration of
the mountpoints.

These functions come in handy if a pro-

gram wants to use a modified mounting
table that is only used by it. A sam-
ple application would be a configuration
program that allows you to preview the
changes before they are applied to the con-
figuration.

5.7 Trie

For the trie implementation, we created a
data structure:

struct _Trie {
struct _Trie* children[MAX_UCHAR];
char *text[MAX_UCHAR];
unsigned int textlen[MAX_UCHAR];
void *value[MAX_UCHAR];
void *empty_value;

};

We have an array entry for each charac-
ter. The element’s children hold the point-
ers to the subnodes. The text element
holds the string that is stored in the node,
textlen is the corresponding length of
this string and value contains the back-
end information. The item empty_value
is used to store the root backend. The fol-
lowing graphic illustrates the use of this
data structure.

’\x00’ ... ’u’ ... ’s’ ... ’\xff’

values

text

textlen

childs

empty_value

Trie

"filesys"

0 0 0 00

"user/" "system/users/"

0

"passwd"

0 0 5 0 13 0 0

0 0 0 0

0 0 0 0

0

0 0

’\x00’ ... ’_’ ... ’t’ ... ’\xff’

values

text

textlen

childs

empty_value 0

0 0 0 00

"_template/" "template/"

0

"template"

0 0 10 0 9 0 0

0 0 0 0

0 0 "template" 0

0

0 0

0

15

5.8 KeySet

Keys can be joined together to a set and
need to fulfill various requirements. Ap-
plications typically need one to a hundred
thousand keys. To provide an efficient set
for all of these requirements, we used an
extensible array storing pointer to keys.
Starting with ksNew(), an application
can give a hint how large the keyset is at
initialization. Using that, the keyset is not
likely to grow too often.
The allocated space is doubled each
time because most allocators work quite
well with power of 2 storage sizes.

struct _KeySet {
struct _Key **array;
size_t size;
size_t rsize;
size_t alloc;

struct _Key *cursor;
size_t current;
uint32_t flags;

};

array contains an array of pointers
to keys. While size is the size of all
keys, rsize is the size of keys having the
keyRemove() flag set, used to provide a
sort order needed for ksLookup() and
kdbSet(). The allocation size alloc im-
plies the actual allocated size of the array.
The attributes cursor and current to-
getherwith the functions ksSetCursor()
and ksGetCursor() provide a cur-
sor to save and restore the state of the
keyset. Internal current will be used
as index for the array and changed by
ksSetCursor().

6 Status

The new interface kdbOpen(),
kdbClose(), kdbGet() and kdbSet()

works properly. There is a testing frame-
work checking all functions with valgrind
for memory leaks. The keyset works,
keys have a reference counter to automati-
cally get freed and the sorting will happen
whenever needed.

There are 4 backends working with
some limitations: fstab, passwd, hosts
and filesys. You can mount backends
statically by adding the requested entry
in system/elektra/mountpoints, but
you can also mount backends dynamically
by kdbMount().

7 Further Work

The stable version has not been released
yet and we are endeavoring to weed out
bugs and to extend the test framework to
achieve full coverage.

kdbSet() has an awkward solution
for splitting the keysets requiring walking
through the keyset multiple times and not
taking benefit of the sorting. Furthermore,
the parent key is not taken into account
and error scenarios are in a very prema-
ture state andwe expect a lot of work there
too.

Not-yet implemented other mounting
strategies are of further interest like the
special type approach. kdbMount()
works, but the actual use case, the dae-
mon, just uses a single backend not capa-
ble of building its own namespace out of
configuration.

8 Conclusion

We showed that it is possible to imple-
ment a global configuration namespace
with any desired backends. With that so-
lution, efficient backends can be used to

16

handle applications needing a large con-
figuration or a small startup time. Fur-
thermore, old configuration files can still
be used. This and more can be achieved
without losing the ability to access the
whole configuration of the system by any
application using Elektra. Because of a
faster implementation of keyset, the per-
formance impact is tolerable.

This work certainly gives a perspective
on what future configuration libraries can
offer. Additionally, it gives a basis for the
next stable Elektra release.

9 Glossary

backend Elektra has to store the key-
value pairs somehow. Many differ-
ent ways exist, e.g. to store it in an
xml-file or in a database. Elektra is
not tied to a single method and ev-
ery technique to save the key-value
pairs is implement in a backend. Be-
fore this work, it was not possible
to have multiple different backends
at runtime, but with the backend
mounting feature you can choose the
backend of your choice for each key-
value pair.

backend configuration Every backend
can be configured. Typically pa-
rameters are to use different files or
servers for network connections. A
keyset will be passed to the back-
ends holding this information. This
was introduced during our project
thesis.

binding Elektra is written in C, but it
should be possible to use Elektra in
other programming languages. A
language binding maps the Elektra

API to a different programming lan-
guage.

mounting table There is a table to choose
a backend which contains the
mountpoints associated with the
backend that is used for this key and
all it’s subkeys, unless there is no
other entry in the table for this key.
If multiple different entries exist for
a key, the longest will be chosen.

default backend Someone can use Elek-
tra without the new mounting fea-
ture. In this case the default back-
end is used. The backend that is
used as default backend is chosen at
compile time. The default backend is
also used to read the backend config-
uration, especially the mounting ta-
ble. At this point Elektra doesn’t
know anything about the existing
backends, so it needs a backend that
can be used for this task. The de-
fault backend is also used if there is
mounting for a key, if there is no en-
try in the mounting table for the key
name.

root backend In contrast to the default
backend, the root backend is only
used in combination with mounting,
i.e. a loaded mounting table must
exist. Otherwise, no root backend
is present. The root backend is the
backend used if there are no other
backends for a key in the mount-
ing table available. If mounting is
loaded, the root backend supersedes
the default backend, although the
default backend is used as a root
backend if the latter is not specified.

key As Elektra deals with key-value pairs,
a data structure was introduced to

17

represent these pairs. Each key has
a name, a value, an optional com-
ment and some metadata. There are
a lot of functions available to access
or modify key data. The key data
structure is designed so that it can be
implemented as a class in an object-
oriented programming language.

keyset Since dealing with many single
keys has a negative effect on perfor-
mance, a container exists for a set of
keys or, to be exact, a bag of keys.

Like the key data structure, the key-
set is designed for implementation
as an object in an object-oriented lan-
guage binding.

key directory Each key can have sub-
keys. If there are subkeys for a key
present then this kind of key is called
a directory key.

mountpoint Amountpoint is a key direc-
tory. Below that point, another back-
end will take care of those keys.

References

[1] Jon Louis Bentley. Writing Efficient Programs. Prentice Hall, first edition, 1982.

[2] Helmut Herold. C-Kompaktreferenz. Addison-Wesley, first edition, 2002.

[3] Brian W. Kernighan and Dennis M. Ritchie. C Programming Language. Prentice Hall,
second edition, 1988.

[4] John R. Levine. Linkers and Loaders. Morgan Kaufmann, first edition, 2000.

[5] Thomas Ottmann and PeterWidmayer. Algorithmen und Datenstrukturen. Spektrum,
Akad. Verl., fourth edition, 2002.

[6] Gary V. Vaughn, Ben Ellison, Tom Tromey, and Ian Lance Taylor. GNU Autoconf,
Automake and Libtool. New Riders, first edition, 2000.

18

